RISC-V基础之浮点指令(包含实例)

这篇具有很好参考价值的文章主要介绍了RISC-V基础之浮点指令(包含实例)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

RISC-V体系结构定义了可选的浮点扩展,分别称为RVF、RVD和RVQ,用于操作单精度、双精度和四倍精度的浮点数。RVF/D/Q定义了32个浮点寄存器,f0到f31,它们的宽度分别为32位、64位或128位。当一个处理器实现了多个浮点扩展时,它使用浮点寄存器的低位部分来执行低精度的指令。f0到f31与程序(也称为整数)寄存器x0到x31是分开的。与程序寄存器一样,浮点寄存器也按照约定用于某些特定的目的

RISC-V基础之浮点指令(包含实例),RISC-V基础知识,risc-v

 

RISC-V的浮点指令分为以下几类:
- 浮点加载和存储指令:用来在内存和浮点寄存器之间传输浮点数。例如,FLW指令从内存加载一个单精度浮点数到浮点寄存器,FSW指令将一个单精度浮点数从浮点寄存器存储到内存。
- 浮点计算指令:用来在浮点寄存器之间进行浮点数的加、减、乘、除、平方根等运算。例如,FADD.S指令将两个单精度浮点数相加,FDIV.D指令将两个双精度浮点数相除。
- 浮点转换指令:用来在不同的浮点数格式或整数格式之间转换浮点数。例如,FCVT.S.D指令将一个双精度浮点数转换为一个单精度浮点数,FCVT.W.S指令将一个单精度浮点数转换为一个32位整数。
- 浮点比较指令:用来在浮点寄存器之间进行浮点数的相等、小于、小于等于等比较,并将布尔结果记录在整数寄存器中。例如,FEQ.S指令判断两个单精度浮点数是否相等,FLT.D指令判断两个双精度浮点数是否小于。
- 浮点移动指令:用来在整数寄存器和浮点寄存器之间传输数据,不改变数据的位模式。例如,FMV.X.W指令将一个单精度浮点数从浮点寄存器移动到整数寄存器,FMV.W.X指令将一个32位整数从整数寄存器移动到浮点寄存器。
- 浮点类别化指令:用来判断一个浮点数是否属于某个特定的类别,如正无穷、负无穷、非数字(NaN)等,并将布尔结果记录在整数寄存器中。例如,FCLASS.S指令将一个单精度浮点数的类别编码为一个12位的位向量,并放入整数寄存器。

```riscv
# RISC-V floating-point program to calculate pi
# using the Gregory-Leibniz series
# pi/4 = 1 - 1/3 + 1/5 - 1/7 + ...
# f0: the result (pi)
# f1: the current term
# f2: the denominator
# f3: the sign (-1 or 1)
# f4: the constant 4.0
# f5: the constant 1.0
# f6: the constant -1.0
# t0: the loop counter

.data
    n: .word 1000000 # number of terms to compute

.text
    # initialize registers
    flw f4, =4.0 # f4 = 4.0
    flw f5, =1.0 # f5 = 1.0
    flw f6, =-1.0 # f6 = -1.0
    fmv.s f0, f5 # f0 = 1.0 (result)
    fmv.s f1, f5 # f1 = 1.0 (term)
    fmv.s f2, f5 # f2 = 1.0 (denominator)
    fmv.s f3, f5 # f3 = 1.0 (sign)
    lw t0, n # t0 = n (loop counter)

loop:
    # update the result
    fsub.s f0, f0, f1 # f0 = f0 - f1

    # update the term
    fadd.s f2, f2, f4 # f2 = f2 + 4.0
    fdiv.s f1, f3, f2 # f1 = f3 / f2

    # update the sign
    fneg.s f3, f3 # f3 = -f3

    # update the loop counter
    addi t0, t0, -1 # t0 = t0 - 1

    # check the loop condition
    bnez t0, loop # if t0 != 0, go to loop

    # multiply the result by 4
    fmul.s f0, f0, f4 # f0 = f0 * 4.0

    # return the result in a0
    fcvt.w.s a0, f0 # a0 = (int)f0

这个程序示例是用RISC-V的单精度和双精度浮点指令来计算圆周率近似值的。它使用了Gregory-Leibniz级数,这一般项是(-1)^n / (2n+1),它的和等于pi/4。也就是说,pi/4 = 1 - 1/3 + 1/5 - 1/7 + …。这个程序使用了递归函数来计算这个级数的前n项的和,其中n是一个全局变量,可以在程序中修改。

RISC-V基础之浮点指令(包含实例),RISC-V基础知识,risc-v

 

它的功能是将数组中的每个元素加上10,并将结果存回数组中。它的主要步骤如下:文章来源地址https://www.toymoban.com/news/detail-636698.html

  • 首先,代码在s0寄存器中存放了数组scores的基地址,这个数组有200个元素,每个元素占4个字节。代码还在s1寄存器中初始化了一个循环计数器i为0,在t2寄存器中存放了一个循环终止条件200,在t3寄存器中存放了一个常数10,在ft0浮点寄存器中存放了一个单精度浮点数10.0。
  • 然后,代码进入一个for循环,每次循环都对数组中的一个元素进行操作。循环的条件是i < 200,如果不满足就跳转到done标签处结束程序。
  • 在循环体中,代码首先计算数组中第i个元素的地址,方法是将i左移2位(相当于乘以4),然后加上s0(基地址)。这个地址被保存在t3寄存器中。
  • 然后,代码使用flw指令从t3寄存器指向的内存地址加载一个单精度浮点数到ft1浮点寄存器中,这个浮点数就是scores[i]。
  • 接着,代码使用fadd.s指令将ft1和ft0两个浮点寄存器中的值相加,并将结果保存在ft1中。这相当于执行了scores[i] = scores[i] + 10.0。
  • 然后,代码使用fsw指令将ft1寄存器中的值存储到t3寄存器指向的内存地址中,这相当于将修改后的scores[i]写回数组中。
  • 最后,代码使用addi指令将s1寄存器(循环计数器i)加上1,并跳转到for标签处继续下一次循环。

到了这里,关于RISC-V基础之浮点指令(包含实例)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • RISC-V基础之函数调用(五)函数递归调用及函数参数数量溢出(超出现有寄存器个数)约定(包含实例)

    首先先解释一下栈在函数调用中的作用,更详细的部分请参照考研复习之数据结构笔记(五)栈和队列(上)(包含栈的相关内容)_管二狗赶快去工作!的博客-CSDN博客 函数嵌套调用栈的作用是用来保存和恢复函数调用过程中的相关信息,如参数、局部变量、返回地址、上下

    2024年02月14日
    浏览(51)
  • RISC-V— 架构基础知识学习

    CPU ,全称为 中央处理器单元 ,简称为 处理器 。 ARM (Advanced RISC Machines )是一家诞生于英国的处理器设计与软件公司,总部位于英国的剑桥,其主要业务是设计 ARM 架构的处理器,同时提供与 ARM 处理器相关的配套软件,各种 Soc 系统 IP 、物理 IP 、 GPU 、视频和显示等产品。

    2024年02月08日
    浏览(49)
  • 【RISC-V 指令集】RISC-V 向量V扩展指令集介绍(六)- 向量内存一致性模型

    以下是《riscv-v-spec-1.0.pdf》文档的关键内容: 这是一份关于向量扩展的详细技术文档,内容覆盖了向量指令集的多个关键方面,如向量寄存器状态映射、向量指令格式、向量加载和存储操作、向量内存对齐约束、向量内存一致性模型、向量算术指令格式、向量整数和浮点算术

    2024年04月09日
    浏览(52)
  • RISC-V汇编指令

    写在最前面:这一篇是UC Berkeley的CS61C的笔记,根据我自己的理解进行学习记录,其中贴的一些图片来自于课程PPT。 了解汇编之前,我们需要先了解为什么需要汇编?以下是我的理解: 机器执行的命令都是些二进制的机器码,我们需要对机器进行编程需要记住这些机器码,这

    2024年02月15日
    浏览(55)
  • RISC-V 指令集介绍

            指令集从本质上可以分为复杂指令集(Complex Instruction Set Computer, CISC )和精简指令集(Reduced Instruction Set Computer, RISC )两种。复杂指令集的特点是能够在一条指令内完成很多事情。         指令架构(Instruction Set Architecture, 缩写为ISA),是软件和硬件的接口

    2024年02月14日
    浏览(46)
  • 【RISC-V】 li指令

    在RISC-V中有这样一条伪指令: 可以将任意的32位数据或者地址加载到指定的寄存器中 在 RV32I中,它扩展到 lui 和/或 addi li 何时扩展为 lui 或者 addi呢?又何时扩展为lui 和 addi呢? 我们观察lui 和 addi 的指令码即可得出结果 由上图可知, lui 加载的立即数为高20位, addi 加载的立即

    2023年04月08日
    浏览(41)
  • RISC-V:实现ADDI指令

            实验整体框架已给出,任务主要包括: 数据窗口的添加(可选,我添加了) 立即数生成错误修改(老师主动设置错误,修改见代码) 三端口寄存器模块的添加(这与此前的三端口略有不同,注意重点查看RegisterFile模块的实现) 代码中我加了数据观察窗口 所以验

    2023年04月08日
    浏览(46)
  • RISCV 6 RISC-V加载存储指令

    RISCV - 1 RV32/64G指令集清单 RISCV - 2 “Zicsr“, CSR Instructions RISCV -3 RV32I/RV64I基本整型指令集 RISCV - 4 ISA 扩展名命名约定 RISCV 5 RISC-V调用规则 RV32I is a load-store architecture, where only load and store instructions access memory and arithmetic instructions only operate on CPU registers. RV32I provides a 32-bit address s

    2024年02月10日
    浏览(40)
  • 19|RISC-V指令精讲(四):跳转指令实现与调试

    你好,我是LMOS。 前面我们学习了无条件跳转指令,但是在一些代码实现里,我们必须根据条件的判断状态进行跳转。比如高级语言中的if-else 语句,这是一个典型程序流程控制语句,它能根据条件状态执行不同的代码。这种语句落到指令集层,就需要有根据条件状态进行跳转

    2024年01月22日
    浏览(42)
  • RISC-V(2)——特权级及特权指令集

    目录 1.  特权级 2. 控制和状态寄存器(CSR) 2.1 分类  2.2 分析               一个 RISC-V 硬件线程( hart )是运行在某个特权级上的,这个特权级被编码到一个或者多个 CSR (control and status register, 控制和状态寄存器 )中的一种模式。         当前定义了四种特权级

    2024年02月10日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包