【论文阅读】基于深度学习的时序异常检测——TimesNet

这篇具有很好参考价值的文章主要介绍了【论文阅读】基于深度学习的时序异常检测——TimesNet。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

系列文章链接
参考数据集讲解:数据基础:多维时序数据集简介
论文一:2022 Anomaly Transformer:异常分数预测
论文二:2022 TransAD:异常分数预测
论文三:2023 TimesNet:基于卷积的多任务模型

论文链接:TimesNet.pdf
代码库链接:https://github.com/thuml/Time-Series-Library
项目介绍:https://github.com/thuml/TimesNet
参考作者解读:ICLR2023 | TimesNet: 时序基础模型,预测、填补、分类等五大任务领先

本文和Anomaly Transformer都是清华大学的团队,也是同一个作者。本文研究基于深度学习异常检测有两个背景:

  1. 基于RNN或者CNN的算法,很难捕捉到时序数据的长期以来关系,因此都只能针对局部窗口内的数据进行建模,这个观点和TransAD是一样的;
  2. 近年来transformer表现出了提取时序数据长期依赖关系(如:周期性、季节性等)的优势,因此能够基于transformer进行依赖关系提取,但是简单的分散点位很难作为这种长序列依赖关系的强有力的表征,而且时序数据的周期性会受到多种周期性因素(天气、节假日等)的影响,因此需要考虑如何处理这种多周期变化带来的影响;

基于上述两点思考,作者提出了TimesNet这样的模型架构,具体创新点表现如下:文章来源地址https://www.toymoban.com/news/detail-636943.html

  • 一维到二维的时序数据转换:将一维的时间序列转换成二维的数据表征,同时对时序数据周期内(连续邻近点位变化)和周期间(长期规律性变化)的变化进行建模;对于一个长度为 T T T、通道数为 C C C的一维时间序列 X 1 D ∈ R T ∗ C X_{1D}\in \mathbb R^{T*C} X1DRTC,对于长时间序列而言,其周期性可以通过傅立叶变换计算得到: A = A v g ( A m p ( F F T ( X 1 D ) ) ) \bold A=Avg(Amp(FFT(X_{1D}))) A=Avg(Amp(FFT(X1D))) f 1 , . . . f k = a r g f ∗ ∈ { 1 , . . . , [ T 2 ] } A f_1,...f_k=\underset {f_*\in \{1,...,[\frac {T}{2}]\}}{arg} \bold A f1,...fk=f{1,...,[2T]}argA p 1 , . . . p k = [ T f x ] , . . . , [ T f k ] p_1,...p_k=[\frac{T}{f_x}],...,[\frac{T}{f_k}] p1,...pk=[fxT],...,[fkT]其中 A \bold A A代表了一维时间序列中每个频率分量的强度,强度最大的 k k k个频率 { f 1 , . . . f k } \{f_1,...f_k\} {f1,...fk}对应最显著的 k k k个周期长度 { p 1 , . . . p k } \{p_1,...p_k\} {p1,...pk},上述过程简记如下: A , { f 1 , . . . f k } , { p 1 , . . . p k } = P e r i o d ( X 1 D ) \bold A,\{f_1,...f_k\},\{p_1,...p_k\}=Period(X_{1D}) A,{f1,...fk},{p1,...pk}=Period(X1D)这样基于上述计算就可以根据不同的周期长度进行计算出不同的二维张量表示: X 2 D i = R e s h a p e p i , f i ( P a d d i n g ( X 1 D ) ) , i ∈ { 1 , . . . k } X_{2D}^i=Reshape_{p_i,f_i}(Padding(X_{1D})),i\in\{1,...k\} X2Di=Reshapepi,fi(Padding(X1D)),i{1,...k}其中Padding 操作是为了保持张量维度的一致性; X 2 D i X_{2D}^i X2Di就可以表示在频率 f i f_i fi、周期长度 p i p_i pi的基础上转换的第 i i i个二维张量,行和列分别表示周期内和周期间的变化,经过这个转换,一维的时间序列数据就可以被转换成 k k k个不同频率和周期下的二维的张量集合 { X 2 D 1 , . . . X 2 D k } \{X_{2D}^1,...X_{2D}^k\} {X2D1,...X2Dk},经过这种转换,就可以采用二维卷积核来进行特征提取;
    【论文阅读】基于深度学习的时序异常检测——TimesNet,时间序列分析与处理,论文阅读,深度学习,人工智能
    【论文阅读】基于深度学习的时序异常检测——TimesNet,时间序列分析与处理,论文阅读,深度学习,人工智能
  • TimesBlock:在完成一维到二维的转换后,采用Inception模型进行二维的张量集合处理(简化了一下表示,具体看原文): X ^ 2 D = I n c e p t i o n ( X 2 D ) \hat X_{2D}=Inception(X_{2D}) X^2D=Inception(X2D)然后就像残差模块的处理一样,通过聚合将卷积后的数据转换到一维空间: X ^ 1 D = T r u n c ( R e s h a p e 1 , p ∗ f ( X ^ 2 D ) ) \hat X_{1D}=Trunc(Reshape_{1,p*f}(\hat X_{2D})) X^1D=Trunc(Reshape1,pf(X^2D))然后采用加权求和的方式得到最终的输出:【论文阅读】基于深度学习的时序异常检测——TimesNet,时间序列分析与处理,论文阅读,深度学习,人工智能
    【论文阅读】基于深度学习的时序异常检测——TimesNet,时间序列分析与处理,论文阅读,深度学习,人工智能
    该模型可以应用于多种任务:时序数据分类、预测、异常检测、缺失值填充等,从实验效果来看很全能;

到了这里,关于【论文阅读】基于深度学习的时序异常检测——TimesNet的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【论文阅读】基于深度学习的时序预测——Crossformer

    系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平稳性时序预测 论文五:2022 Pyraformer:基于金字塔图结构的时序预测 论文六:2023 Crossformer:多变量时序预

    2024年02月13日
    浏览(32)
  • 【论文阅读】基于深度学习的时序预测——Pyraformer

    系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平稳性时序预测 论文五:2022 Pyraformer:基于金字塔图结构的时序预测 论文六:2023 Crossformer:多变量时序预

    2024年02月13日
    浏览(28)
  • 【论文阅读】基于深度学习的时序预测——Non-stationary Transformers

    系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平稳性时序预测 论文五:2022 Pyraformer:基于金字塔图结构的时序预测 论文六:2023 Crossformer:多变量时序预

    2024年02月13日
    浏览(29)
  • 【论文阅读】一种基于图深度学习的互联网通信故障检测与定位方法

    论文原文:A Graph Deep Learning-Based Fault Detection and Positioning Method for Internet Communication Networks 一种基于图深度学习的 互联网通信故障检测与定位方法         新一代互联网在现代社会中,互联网接入的规模正在逐渐扩大。根据深度学习IC发布的最新报告,近一半已经成为网民

    2024年04月08日
    浏览(47)
  • 【论文阅读】xNIDS:可解释的基于深度学习的网络入侵检测系统的主动入侵响应(USENIX-2023)

      基于深度学习的网络入侵检测系统(DL-NIDS)得到了显著的探索,并显示出卓越的性能,但存在两个问题: 检测结果和可操作的解释之间存在语义差距,不足以对检测到的入侵作出积极的回应 高错误成本使网络运营商不愿意仅仅根据检测结果做出反应(即高误报带来的警

    2024年02月05日
    浏览(33)
  • 【阅读论文】基于VAE-LSTM混合模型的时间序列异常检测

    Anomaly Detection for Time Series Using VAE-LSTM Hybrid Model CCFB Shuyu LinRonald ClarkRobert BirkeSandro SchönbornNiki TrigoniStephen J. Roberts International Conference on Acoustics, Speech, and Signal Processing May 2020 在这项工作中,我们提出了一种VAE-LSTM混合模型,作为一种无监督的时间序列异常检测方法。我们的模型

    2024年02月08日
    浏览(35)
  • 用于无监督视频异常检测的合成伪异常:一种简单有效的基于掩码自动编码器的框架 论文阅读

    论文标题:SYNTHETIC PSEUDO ANOMALIES FOR UNSUPERVISED VIDEO ANOMALY DETECTION: A SIMPLE YET EFFICIENT FRAMEWORK BASED ON MASKED AUTOENCODER 文章信息: 发表于:ICASSP 2023(CCF B) 原文链接:https://arxiv.org/abs/2303.05112 源码:无 由于用于训练的异常样本的可用性有限,视频异常检测通常被视为一类分类问题

    2024年02月04日
    浏览(39)
  • 『论文阅读|利用深度学习在热图像中实现无人机目标检测』

    论文题目: Object Detection in Thermal Images Using Deep Learning for Unmanned Aerial Vehicles 利用深度学习在热图像中实现无人机目标检测 这项研究提出了一种神经网络模型,能够识别无人驾驶飞行器采集的热图像中的微小物体。模型由三部分组成:骨干、颈部和预测头。骨干基于 YOLOv5 的结

    2024年02月20日
    浏览(27)
  • 论文阅读——基于深度学习智能垃圾分类

    B. Fu, S. Li, J. Wei, Q. Li, Q. Wang and J. Tu, “A Novel Intelligent Garbage Classification System Based on Deep Learning and an Embedded Linux System,” in IEEE Access, vol. 9, pp. 131134-131146, 2021, doi: 10.1109/ACCESS.2021.3114496. 垃圾数量的急剧增加和垃圾中物质的复杂多样性带来了严重的环境污染和资源浪费问题。回收

    2024年02月11日
    浏览(31)
  • 论文阅读-FCD-Net: 学习检测多类型同源深度伪造人脸图像

    一、论文信息 论文题目: FCD-Net: Learning to Detect Multiple Types of Homologous Deepfake Face Images 作者团队: Ruidong Han , Xiaofeng Wang , Ningning Bai, Qin Wang, Zinian Liu, and Jianru Xue (西安理工大学,西安交通大学) 论文网址: FCD-Net: Learning to Detect Multiple Types of Homologous Deepfake Face Images | IEEE Jou

    2024年02月06日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包