基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值matlab仿真

这篇具有很好参考价值的文章主要介绍了基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值matlab仿真。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值matlab仿真,MATLAB算法开发,# 图像处理,matlab,亚奈奎斯特采样,SOMP算法,平板脉冲响应,空间插值

2.算法运行软件版本

matlab2022a

3.部分核心程序

......................................................................
%fine regular grid
NSamples      = 4;%采样间隔
Im            = double(images(:,:,1));%R通道图像
image2(:,:,1) = func_SOMP_tops1(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,2));%G通道图像
image2(:,:,2) = func_SOMP_tops1(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,3));%B通道图像
image2(:,:,3) = func_SOMP_tops1(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用

subplot(222);
imshow(uint8(image2));%显示重构效果图
hold on;
%显示白色点
for i = 1:R_size%循环
    for j = 1:C_size%循环
        if mod(i,NSamples)==1 & mod(j,NSamples)==1%采用间隔 
           plot(i,j,'wo','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','w','MarkerSize',5);%画白点
        end
    end
end
title('reconstruction with the fine regular grid');%显示标题

%%
%coarse regular grid
NSamples      = 8;
Im            = double(images(:,:,1));%R通道图像
image3(:,:,1) = func_SOMP_tops2(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,2));%G通道图像
image3(:,:,2) = func_SOMP_tops2(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,3));%B通道图像
image3(:,:,3) = func_SOMP_tops2(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用

subplot(223);
imshow(uint8(image3));
hold on;
%显示白色点
for i = 1:R_size
    for j = 1:C_size
        if mod(i,NSamples)==1 & mod(j,NSamples)==1%采用间隔 
           plot(i,j,'wo','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','w','MarkerSize',5);%画白点
        end
    end
end
title('reconstruction with the coarse regular grid with Fourier interpolation');%显示标题



%%
%random grid
%下面的语句是:随机采用网格点设置
tmps     = rand(R_size,C_size);
Nsamples = zeros(R_size,C_size);
for i = 1:R_size
    for j = 1:C_size
        if tmps(i,j)>0.985
           Nsamples(i,j)=1; 
        else
           Nsamples(i,j)=0;  
        end
    end
end

Im            = double(images(:,:,1));%R通道图像
image4(:,:,1) = func_SOMP_tops3(Im,Num_Iter,Nsamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,2));%G通道图像
image4(:,:,2) = func_SOMP_tops3(Im,Num_Iter,Nsamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,3));%B通道图像
image4(:,:,3) = func_SOMP_tops3(Im,Num_Iter,Nsamples,R_size,C_size);%SOMP算法调用

subplot(224);
imshow(uint8(image4));
hold on;
%显示白色点
for i = 1:R_size
    for j = 1:C_size
        if Nsamples(i,j)==1%采用间隔 
           plot(i,j,'wo','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','w','MarkerSize',5);%画白点
           hold on;
        end
    end
end
title('reconstruction with the fine regular grid');%显示标题
03_007m

4.算法理论概述

      平板脉冲响应(Pulse Response)是通信和雷达等领域中的重要参数,它描述了信号在空间中传播的特性。在现实应用中,获取完整的脉冲响应通常是耗时且昂贵的。基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值是一种用于从有限采样数据中估计完整脉冲响应的方法。

       亚奈奎斯特采样是一种在信号频率谱存在带限特性时,使用低于奈奎斯特定理的采样率进行采样的方法。对于带限信号,采样频率可以低于信号最高频率的两倍。这种采样方法可以节省存储和传输开销。

       亚奈奎斯特采样是一种在信号频率谱存在带限特性时,使用低于奈奎斯特定理的采样率进行采样的方法。对于带限信号,采样频率可以低于信号最高频率的两倍。这种采样方法可以节省存储和传输开销。

       SOMP(Sparse Orthogonal Matching Pursuit)算法是一种用于稀疏信号重构的迭代算法。它通过迭代地选择与残差最相关的稀疏原子(例如,在信号表示中的原子函数)来逼近原始信号。SOMP算法能够高效地从少量观测数据中恢复稀疏信号。

SOMP算法的实现过程包括以下步骤:

  1. 初始化残差为观测数据。
  2. 在每一步中,选择与当前残差最相关的稀疏原子,并添加到信号表示中。
  3. 更新残差,即将观测数据减去已选择的原子的贡献。
  4. 重复步骤2和3,直到达到预定的稀疏度或误差要求。

      基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值将这两种方法结合起来,用于从有限采样数据中估计完整的平板脉冲响应。首先,使用亚奈奎斯特采样获取脉冲响应的有限采样数据。然后,应用SOMP算法来从这些有限采样数据中重构脉冲响应。

      基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值的实现过程如下:

  1. 使用亚奈奎斯特采样获取平板脉冲响应的有限采样数据。
  2. 初始化残差为观测数据。
  3. 在每一步中,选择与当前残差最相关的脉冲响应原子,并添加到重构的脉冲响应中。
  4. 更新残差,即将观测数据减去已选择的原子的贡献。
  5. 重复步骤3和4,直到达到预定的稀疏度或误差要求。
  6. 得到重构的平板脉冲响应。

       基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值在雷达、无线通信等领域具有广泛应用。通过从有限采样数据中恢复完整的脉冲响应,可以提高系统性能和信号处理效率。

基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值matlab仿真,MATLAB算法开发,# 图像处理,matlab,亚奈奎斯特采样,SOMP算法,平板脉冲响应,空间插值

 

5.算法完整程序工程

OOOOO

OOO

O文章来源地址https://www.toymoban.com/news/detail-637019.html

到了这里,关于基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值matlab仿真的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于PCL的RANSAC(随机采样一致)算法简介与示例

    RANSAC(Random sample consensus,随机采样一致)是3D点云拟合的一种重要的手段,可以对直线、圆、平面,圆球、圆柱等形状的点云进行拟合,其优点在于可以最大程度上减少噪声点对拟合效果的影响。 RANSAC各种类型拟合的计算原理基本类似。 1,进行随机抽样,如直线,就随机找

    2024年02月02日
    浏览(47)
  • 《算法导论》学习(四)---- 矩阵乘法的Strassen(斯特拉森)算法

    矩阵乘法可以采用分治的策略。 这里提供了两个分治策略的解决 n ∗ n n*n n ∗ n 矩阵之间乘法的算法 但是着两个方法的缺点是只能是两个 n ∗ n n*n n ∗ n 矩阵的乘法,同时n必须为2的幂 之后也对这两个算法进行了时间复杂度上的分析 对于 n ∗ n n*n n ∗ n 矩阵A,B,C(n为2的

    2023年04月09日
    浏览(45)
  • 自动驾驶路径规划——基于概率采样的路径规划算法(RRT、RRT*)

        在上一讲中,我们学习了 基于概率采样的路径规划算法——PRM算法,这一讲我们继续学习基于概率采样的路径规划算法——RRT、RRT*。     快速探索随机树(RRT)由Steven M. LaValle和James J. Kuffner Jr开发, 是对状态空间中的采样点进行碰撞检测,避免了对空间的建模

    2024年02月07日
    浏览(49)
  • (4)【全局路径规划】基于采样的方法--RRT类算法、PRM算法、Lattice planner等

    提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 TODO:写完再整理

    2024年02月15日
    浏览(36)
  • 【数据结构】最短路径算法实现(Dijkstra(迪克斯特拉),FloydWarshall(弗洛伊德) )

    最短路径问题 :从在带权有向图G中的某一顶点出发,找出一条通往另一顶点的最短路径,最短也就是沿路径各边的权值总和达到最小。 单源最短路径问题:给定一个图G = ( V , E ) G=(V,E)G=(V,E),求源结点s ∈ V s∈Vs∈V到图 中每个结点v ∈ V v∈Vv∈V的最短路径 针对一个带权

    2024年02月04日
    浏览(47)
  • 基于STM32的ADC采样及各式滤波实现(HAL库,含VOFA+教程)_数据采集滤波算法stm32(3)

    2.2 VOFA+使用方法 VOFA+ 的数据协议引擎有 3种 : FireWater , JustFloat , RawData 。每种数据协议引擎都有自己特殊的使用效果,读者朋友可以根据自己的实际需要去选择使用。作者这里主要给大家演示一下 FireWater协议 下的VOFA+使用效果和方法。 FireWater协议 是 CSV风格 的字符串流,

    2024年04月23日
    浏览(45)
  • 【点云上采样】最近邻插值上采样算法

    本帖更新中 点云最近邻插值上采样算法是一种常见的点云处理方法,用于将稀疏的点云数据进行上采样,增加点云的密度和细节。该算法基于最近邻的原理,在已有的点云数据中找到最近邻的点,并根据其位置和属性信息来生成新的点。 点云最近邻插值上采样算法的主要步

    2024年04月27日
    浏览(28)
  • ADASYN过采样算法

    ADASYN(Adaptive Synthetic Sampling)是一种用于处理类别不平衡问题的样本生成方法,主要用于分类任务。该方法旨在通过自适应生成合成样本,增加少数类别的样本数量,从而平衡类别分布,改善模型的性能。 ADASYN的主要思想是根据不同样本的分布密度,对不同类别的样本进行不

    2024年03月16日
    浏览(23)
  • 工业平板定制方案_基于联发科、紫光展锐平台的工业平板电脑方案

    工业平板主板采用联发科MT6762平台方案,搭载Android 11.0操作系统, 主频最高2.0GHz,效能有大幅提升;采用12nm先进工艺,具有低功耗高性能的特点。 该工业平板主板搭载了IMG GE8320图形处理器,最高主频为680MHz, 支持1080P @30FPS的H.264/H.265视频解码和1080P @30FPS的H.264视频编码。 主板

    2024年01月17日
    浏览(50)
  • chat gpt实现的降采样算法

    保障每个样本都被用到了。

    2024年02月13日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包