算法与数据结构-跳表

这篇具有很好参考价值的文章主要介绍了算法与数据结构-跳表。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


什么是跳表

对于一个单链表来讲,即便链表中存储的数据是有序的,如果我们要想在其中查找某个数据,也只能从头到尾遍历链表。这样查找效率就会很低,时间复杂度会很高,是 O(n)。
算法与数据结构-跳表,算法与数据结构,算法,数据结构
那怎么来提高查找效率呢?如果像图中那样,对链表建立一级“索引”,查找起来是不是就会更快一些呢?每两个结点提取一个结点到上一级,我们把抽出来的那一级叫做索引或索引层。你可以看我画的图。图中的 down 表示 down 指针,指向下一级结点。
算法与数据结构-跳表,算法与数据结构,算法,数据结构
如果我们现在要查找某个结点,比如 16。我们可以先在索引层遍历,当遍历到索引层中值为 13 的结点时,我们发现下一个结点是 17,那要查找的结点 16 肯定就在这两个结点之间。然后我们通过索引层结点的 down 指针,下降到原始链表这一层,继续遍历。这个时候,我们只需要再遍历 2 个结点,就可以找到值等于 16 的这个结点了。这样,原来如果要查找 16,需要遍历 10 个结点,现在只需要遍历 7 个结点。

从这个例子里,我们看出,加来一层索引之后,查找一个结点需要遍历的结点个数减少了,也就是说查找效率提高了。那如果我们再加一级索引呢?效率会不会提升更多呢?

跟前面建立第一级索引的方式相似,我们在第一级索引的基础之上,每两个结点就抽出一个结点到第二级索引。现在我们再来查找 16,只需要遍历 6 个结点了,需要遍历的结点数量又减少了。
算法与数据结构-跳表,算法与数据结构,算法,数据结构
这种链表加多级索引的结构,就是跳表。

跳表的时间复杂度

按照我们刚才讲的,每两个结点会抽出一个结点作为上一级索引的结点,那第一级索引的结点个数大约就是 n/2,第二级索引的结点个数大约就是 n/4,第三级索引的结点个数大约就是 n/8,依次类推,也就是说,第 k 级索引的结点个数是第 k-1 级索引的结点个数的 1/2,那第 k 级索引结点的个数就是 n/(2k)。

假设索引有 h 级,最高级的索引有 2 个结点。通过上面的公式,我们可以得到 n/(2h)=2,从而求得 h=log2n-1。如果包含原始链表这一层,整个跳表的高度就是 log2n。我们在跳表中查询某个数据的时候,如果每一层都要遍历 m 个结点,那在跳表中查询一个数据的时间复杂度就是 O(m*logn)。

那这个 m 的值是多少呢?按照前面这种索引结构,我们每一级索引都最多只需要遍历 3 个结点,也就是说 m=3,为什么是 3 呢?我来解释一下。

假设我们要查找的数据是 x,在第 k 级索引中,我们遍历到 y 结点之后,发现 x 大于 y,小于后面的结点 z,所以我们通过 y 的 down 指针,从第 k 级索引下降到第 k-1 级索引。在第 k-1 级索引中,y 和 z 之间只有 3 个结点(包含 y 和 z),所以,我们在 K-1 级索引中最多只需要遍历 3 个结点,依次类推,每一级索引都最多只需要遍历 3 个结点。

算法与数据结构-跳表,算法与数据结构,算法,数据结构

通过上面的分析,我们得到 m=3,所以在跳表中查询任意数据的时间复杂度就是 O(logn)。这个查找的时间复杂度跟二分查找是一样的。换句话说,我们其实是基于单链表实现了二分查找.

跳表的空间复杂度

通过上面的分析,我们得到 m=3,所以在跳表中查询任意数据的时间复杂度就是 O(logn)。这个查找的时间复杂度跟二分查找是一样的。换句话说,我们其实是基于单链表实现了二分查找

算法与数据结构-跳表,算法与数据结构,算法,数据结构
这几级索引的结点总和就是 n/2+n/4+n/8…+8+4+2=n-2。所以,跳表的空间复杂度是 O(n)。也就是说,如果将包含 n 个结点的单链表构造成跳表,我们需要额外再用接近 n 个结点的存储空间。

如何高效的插入和删除

我们知道,在单链表中,一旦定位好要插入的位置,插入结点的时间复杂度是很低的,就是 O(1)。但是,这里为了保证原始链表中数据的有序性,我们需要先找到要插入的位置,这个查找操作就会比较耗时。

对于纯粹的单链表,需要遍历每个结点,来找到插入的位置。但是,对于跳表来说,我们讲过查找某个结点的时间复杂度是 O(logn),所以这里查找某个数据应该插入的位置,方法也是类似的,时间复杂度也是 O(logn)。我画了一张图,你可以很清晰地看到插入的过程。

算法与数据结构-跳表,算法与数据结构,算法,数据结构

我们再看下删除操作。 如果这个结点在索引中也有出现,我们除了要删除原始链表中的结点,还要删除索引中的。因为单链表中的删除操作需要拿到要删除结点的前驱结点,然后通过指针操作完成删除。所以在查找要删除的结点的时候,一定要获取前驱结点。当然,如果我们用的是双向链表,就不需要考虑这个问题了。

跳表索引动态更新

当我们不停地往跳表中插入数据时,如果我们不更新索引,就有可能出现某 2 个索引结点之间数据非常多的情况。极端情况下,跳表还会退化成单链表。
算法与数据结构-跳表,算法与数据结构,算法,数据结构
作为一种动态数据结构,我们需要某种手段来维护索引与原始链表大小之间的平衡,也就是说,如果链表中结点多了,索引结点就相应地增加一些,避免复杂度退化,以及查找、插入、删除操作性能下降。

当我们往跳表中插入数据的时候,我们可以选择同时将这个数据插入到部分索引层中。如何选择加入哪些索引层呢?

我们通过一个随机函数,来决定将这个结点插入到哪几级索引中,比如随机函数生成了值 K,那我们就将这个结点添加到第一级到第 K 级这 K 级索引中。

算法与数据结构-跳表,算法与数据结构,算法,数据结构
随机函数的选择很有讲究,从概率上来讲,能够保证跳表的索引大小和数据大小平衡性,不至于性能过度退化。文章来源地址https://www.toymoban.com/news/detail-637488.html

代码示例

public class SkipList {

    private static final float SKIPLIST_P = 0.5f;
    private static final int MAX_LEVEL = 16;

    private int levelCount = 1;

    private Node head = new Node();  // 带头链表

    public Node find(int value) {
        Node p = head;
        for (int i = levelCount - 1; i >= 0; --i) {
            while (p.forwards[i] != null && p.forwards[i].data < value) {
                p = p.forwards[i];
            }
        }

        if (p.forwards[0] != null && p.forwards[0].data == value) {
            return p.forwards[0];
        } else {
            return null;
        }
    }

    public void insert(int value) {
        // 随机索引层数
        int level = randomLevel();

        // 定义新节点
        Node newNode = new Node();
        newNode.data = value;

        //
        Node update[] = new Node[level];
        for (int i = 0; i < level; ++i) {
            update[i] = head;
        }

        // record every level largest value which smaller than insert value in update[]
        Node p = head;
        for (int i = level - 1; i >= 0; --i) {
            while (p.forwards[i] != null && p.forwards[i].data < value) {
                p = p.forwards[i];
            }
            update[i] = p;// use update save node in search path
        }

        // in search path node next node become new node forwords(next)
        for (int i = 0; i < level; ++i) {
            newNode.forwards[i] = update[i].forwards[i];
            update[i].forwards[i] = newNode;
        }

        // update node hight
        if (levelCount < level) levelCount = level;
    }

    public void delete(int value) {
        Node[] update = new Node[levelCount];
        Node p = head;
        for (int i = levelCount - 1; i >= 0; --i) {
            while (p.forwards[i] != null && p.forwards[i].data < value) {
                p = p.forwards[i];
            }
            update[i] = p;
        }

        if (p.forwards[0] != null && p.forwards[0].data == value) {
            for (int i = levelCount - 1; i >= 0; --i) {
                if (update[i].forwards[i] != null && update[i].forwards[i].data == value) {
                    update[i].forwards[i] = update[i].forwards[i].forwards[i];
                }
            }
        }

        while (levelCount > 1 && head.forwards[levelCount] == null) {
            levelCount--;
        }

    }

    // 理论来讲,一级索引中元素个数应该占原始数据的 50%,二级索引中元素个数占 25%,三级索引12.5% ,一直到最顶层。
    // 因为这里每一层的晋升概率是 50%。对于每一个新插入的节点,都需要调用 randomLevel 生成一个合理的层数。
    // 该 randomLevel 方法会随机生成 1~MAX_LEVEL 之间的数,且 :
    //        50%的概率返回 1
    //        25%的概率返回 2
    //      12.5%的概率返回 3 ...
    private int randomLevel() {
        int level = 1;

        while (Math.random() < SKIPLIST_P && level < MAX_LEVEL)
            level += 1;
        return level;
    }

    public void printAll() {
        Node p = head;
        while (p.forwards[0] != null) {
            System.out.print(p.forwards[0] + " ");
            p = p.forwards[0];
        }
        System.out.println();
    }

    public class Node {
        private int data = -1;
        private Node forwards[] = new Node[MAX_LEVEL];
    }
}

到了这里,关于算法与数据结构-跳表的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构:跳表讲解

    1.1简介 skiplist本质上也是一种 查找结构 ,用于解决算法中的查找问题,跟 平衡搜索树和哈希表 的价值是一样的,可以 作为key或者key/value的查找模型 。后面我会进行比对。 skiplist是由 William Pugh发明 的,最早出现于他在1990年发表的论文《Skip Lists: A Probabilistic Alternative to Ba

    2024年02月22日
    浏览(40)
  • 【数据结构】3.跳表和散列

    跳表可以近似实现二分查找的效果 以下面长度为7的链表举例,该跳表通过3条链表进行存储。假设要查找元素80: 首先在第2级链表查找,因为80大于40,所以在第3个节点右侧查找 然后在第1级链表查找,因为80大于75,所以在第5个节点右侧查找 最后在第0级链表查找,找到元素

    2024年02月08日
    浏览(45)
  • 数据结构:跳表的原理和运用

    本篇总结的是跳表的相关内容 skiplist 本质上也是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是一样的,可以作为 key 或者 key/value 的查找模型 假如我们每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如下图所示。这样所有新

    2024年02月22日
    浏览(48)
  • 10.Redis数据结构之跳表

    sortedSet是Redis提供的一个非常特别的数据结构,常用作排行榜等功能,将用户id作为value,关注时间或者分数作为score进行排序。 与其他数据结构相似,zset也有两种不同的实现,分别是zipList和(hash+skipList)。 规则如下: zipList满足以下两个条件 [score,value]键值对数量少于128个;

    2024年02月11日
    浏览(40)
  • [Redis] 数据结构zset压缩列表实现和跳表实现讲解

    😚一个不甘平凡的普通人,致力于为Golang社区和算法学习做出贡献,期待您的关注和认可,陪您一起学习打卡!!!😘😘😘 🤗专栏:算法学习 🤗专栏:Go实战 💬个人主页:个人主页 跳表问题 redis 有五种数据结构:string,hash,list,set,zset 压缩列表 或者 跳表 实现 压缩

    2024年02月05日
    浏览(51)
  • Redis从入门到精通【高阶篇】之底层数据结构跳表(SkipList)

    上个篇章回顾,我们上个章节我们学习了《Redis从入门到精通【高阶篇】之底层数据结构整数集(IntSet)详解》,我们从源码层了解整数集由一个头部和多个数据块组成。头部中存储了整数集的元素个数、编码方式和数据块的起始地址等信息。数据块中存储了实际的整型数据,当

    2024年02月09日
    浏览(49)
  • 算法 数据结构分类 数据结构类型介绍 数据结构线性非线性结构 算法合集 (一)

     数据结构分为:                            a.线性结构                            b.非线性结构  a.线性结构:                       数据与结构存在一对一的线性关系; a . 线性结构 存储 分为:                                   顺序存储

    2024年02月10日
    浏览(53)
  • 【算法与数据结构】--算法应用--算法和数据结构的案例研究

    一、项目管理中的算法应用 在项目管理中,算法和数据结构的应用涉及项目进度、资源分配、风险管理等方面。以下是一些案例研究,展示了算法在项目管理中的实际应用: 项目进度管理 : 甘特图算法 :甘特图是一种项目进度管理工具,它使用甘特图算法来展示项目任务

    2024年02月08日
    浏览(58)
  • 数据结构与算法设计分析—— 数据结构及常用算法

    1、顺序表与链表 线性表是 线性结构 ,是包含n个数据元素的有限序列,通过顺序存储的线性表称为 顺序表 ,它是将线性表中所有元素按照其逻辑顺序,依次存储到指定存储位置开始的一块连续的存储空间里;而通过链式存储的 链表 中,每个结点不仅包含该元素的信息,还

    2024年02月07日
    浏览(62)
  • 数据结构和算法——数据结构

    目录 线性结构  队列结构的队列 链表结构的队列 链表的面试题 单向链表应用场景 约瑟夫环问题 栈结构 中缀表达式 前缀表达式 后缀表达式 非线性结构 图 递归解决迷宫问题 递归解决八皇后问题 顺序存储方式,顺序表 常见的顺序存储结构有:数组、队列、链表、栈 链式存

    2024年02月07日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包