画tsne-3d图,给每个类指定自定义的颜色与名字,并显示标签

这篇具有很好参考价值的文章主要介绍了画tsne-3d图,给每个类指定自定义的颜色与名字,并显示标签。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

*********************************原创不易,转载请注明出处!*********************************

功能要求:

        1.画一个关于5个类的3维tsne图;

        2.给每个类指定自定义的颜色与名字:

                颜色: 

                hex = ["#c957db", "#dd5f57", "#b9db57", "#57db30", "#5784db"]  # 粉红,暗红,浅绿,绿,蓝

                名字:

                labels=['c1', 'c2', 'c3', 'c4', 'c5']

        3.在右上角显示每个类的标签;

        4.将得到的图像保存到名字为test的文件夹里面,图像的名字为"five_class.jpg",且图像的清晰度要高;

       我们这里以sklearn中的数字数据集为例,废话不多说,直接上代码,看官可根据如下代码来查看以上功能要求的具体实现细节:(代码中有注释哦)文章来源地址https://www.toymoban.com/news/detail-637743.html

import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt_sne
from sklearn import datasets
from sklearn.manifold import TSNE
import os
from mpl_toolkits.mplot3d import Axes3D  # 进行3D图像绘制
import matplotlib.pylab as plt
from matplotlib.lines import Line2D

def plot_tsne3d(features, labels, epoch, fileNameDir=None):
        '''
        features:(N*m) N*m大小特征,其中N代表有N个数据,每个数据m维
        label:(N) 有N个标签
        '''
        # 判断文件夹是否存在,不存在则创建
        if not os.path.exists(fileNameDir):
            os.makedirs(fileNameDir)
        # 指定3维,并初始化
        tsne = TSNE(n_components=3, init='pca', random_state=0)

        try:
            tsne_features = tsne.fit_transform(features)  # 将特征使用PCA降维至2维
        except:
            tsne_features = tsne.fit_transform(features)

        # 对数据进行归一化操作
        x_min, x_max = np.min(tsne_features, 0), np.max(tsne_features, 0)
        embedded = tsne_features / (x_max - x_min)

        hex = ["#c957db", "#dd5f57", "#b9db57", "#57db30", "#5784db"]  # 粉红,暗红,浅绿,绿,蓝

        # 创建显示的figure
        fig = plt.figure()
        ax = Axes3D(fig)

        # 将数据对应坐标输入到figure中
        values = zip(embedded[:, 0], embedded[:, 1], embedded[:, 2],labels)
        # v就是标签值:范围[0-4]
        # 根据标签v来为每个类设置不同的颜色
        for x,y,z,v in values:
            if v ==0:
                # x,y,z为坐标值
                # c:用于设定颜色
                # marker:用于指定显示的形状
                # s:设定显示形状的大小
                ax.scatter(x,y,z,
                   # c=np.array(plt.cm.Set1(2)).reshape(1,-1),
                   #  c = "limegreen",
                    c=hex[0],
                    marker=".",
                    s=3,
                    # label = "c1"
                   )
            if v == 1:
                ax.scatter(x,y,z,
                           # c="lightcoral",
                           c=hex[1],
                           marker=".",
                           s=3,
                           # label = "c2"
                           )
            if v == 2:
                ax.scatter(x,y,z,
                           # c="coral",
                           c=hex[2],
                           marker=".",
                           s=3,
                           # label = "c3"
                           )
            if v == 3:
                ax.scatter(x,y,z,
                           # c="slategrey",
                           c=hex[3],
                           marker=".",
                           s=3,
                           # label = "c4"
                           )
            if v == 4:
                ax.scatter(x,y,z,
                           # c="cadetblue",
                           c=hex[4],
                           marker=".",
                           s=3,
                           # label = "c5"
                           )

        myHandle = [
                    Line2D([], [], marker='.', color=hex[0], markersize=10, linestyle='None'),
                    Line2D([], [], marker='.', color=hex[1], markersize=10, linestyle='None'),
                    Line2D([], [], marker='.', color=hex[2], markersize=10, linestyle='None'),
                    Line2D([], [], marker='.', color=hex[3], markersize=10, linestyle='None'),
                    Line2D([], [], marker='.', color=hex[4], markersize=10, linestyle='None'),
                    ]
        # 用于标签显示的设置
        legend = ax.legend(handles=myHandle,
                           # labels=['real', 'print1', 'print2', 'replay1','replay2'],
                           labels=['c1', 'c2', 'c3', 'c4', 'c5'],
                           loc="upper right",
                           title="",
                           bbox_to_anchor=(1.0, 1.0),
                           # title_fontsize=20,
                           # prop={'size': 10}
                           )
        ax.add_artist(legend)
        # 保存高清图像到指定的文件夹里面
        plt.savefig(os.path.join(fileNameDir, "%s.jpg") % str(epoch), format="jpg",dpi = 300)



if __name__ == '__main__':
    digits = datasets.load_digits(n_class=5)
    features, labels = digits.data, digits.target
    # print(features.shape)
    # print(labels.shape)

    plot_tsne3d(features, labels, "five_class", fileNameDir="test")

运行结果

画tsne-3d图,给每个类指定自定义的颜色与名字,并显示标签,anti-spoofing,python,opencv,计算机视觉,深度学习
tsne-3D可视化

到了这里,关于画tsne-3d图,给每个类指定自定义的颜色与名字,并显示标签的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包