提速Rust编译器!

这篇具有很好参考价值的文章主要介绍了提速Rust编译器!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Nethercote是一位研究Rust编译器的软件工程师。最近,他正在探索如何提升Rust编译器的性能,在他的博客文章中介绍了Rust编译器是如何将代码分割成代码生成单元(CGU)的以及rustc的性能加速。

他解释了不同数量和大小的CGU之间的权衡以及Rustc是如何使用LLVM并行化代码生成和优化的。此外,Nethercote还探索了一些形成和排序CGU的替代方法,并报告了他的实验结果。

Nethercote发现,很多时候,无法在编译速度、内存占用、编译体积和质量上都实现提升,一个指标的提升,经常伴随另一个性能指标的下降。尽管他没有发现比现有方法更明显的改进,但还是希望在未来继续研究这个问题。

如何提升Rust编译器速度?这篇文章或许能帮助到你!

1、LLVM:Rust编译加速的秘诀

Rust的MIR是HIR到LLVM IR的中间产物,将MIR转换为LLVM IR,然后将其传递给LLVM,从而生成机器代码。在此过程中,LLVM能通过处理多个模块实现并行。Rustc使用LLVM加速Rust的编译。我们称其中的每个模块为“代码生成单元(CGU)”。

提速Rust编译器!,rust,python,人工智能

图:时间位于 x 轴上,每条水平线代表一个线程。主线程显示在顶部,标有 PID。它在开始时处于活动状态,时间足以产生另一个标记为 的线程rustc。rustc底部显示的线程在大部分执行过程中都处于活动状态。还有 16 个 LLVM 线程标记opt cgu.00为 到opt cgu.15,每个线程都会在短时间内处于活动状态。

CGU实际上是如何形成的呢?粗略地说,Rust 程序由许多函数组成,这些函数形成一个有向图,其中从一个函数到另一个函数的调用构成了一条边。我们需要将这个图分割成块(CGU),这是一个图分区问题。我们希望创建大小大致相等的 CGU(因此 LLVM 处理它们所需的时间长度大致相同),并最大限度地减少它们之间的边数(因为这使 LLVM 的工作更轻松,并带来更好的代码质量) 。

实际上,由于我们上面看到的阶梯效应,我们不希望 CGU 的大小完全相同。理想的情况是 CGU 大小存在与梯度相匹配的轻微梯度。这样,所有 CGU 将完全相同地完成处理,以实现最大程度的并行化。

提速Rust编译器!,rust,python,人工智能

合并之前的CGU(9个)

Nethercote认为在合并之前“调整”CGU可能会有所帮助,在某些情况下将函数从一个CGU移动到另一个。例如,如果在CGU A中被调用f的叶函数(即不调用任何其他函数的叶函数)在CGU B中有一个调用方g,那么将f从A移动到B是有意义的,从而去除CGU间的边。(还有其他类似的情况涉及非叶函数,移动也有意义)。我实现了这一点,它给出了一些适度的改进,但我目前还没有决定它是否值得额外的复杂性。

提速Rust编译器!,rust,python,人工智能

调整之后的CGU(5个)

在实现这一点的同时,我还花了一些时间来可视化调用图。我从GraphViz开始。这些图表对于非常小的程序来说看起来不错,但对于较大的程序来说,它们很快就变得无法读取和导航。我在Mastodon上抱怨过这一点,并得到了使用d2的建议,d2速度较慢,但图形可读性更强。

提速Rust编译器!,rust,python,人工智能

2、后端并行方法的软肋

图划分是一个 NP 难题。有几种常见的算法,实现起来相当复杂。相反,rustc 做了一些更简单的事情。首先简单地为每个 Rust 模块创建一个 CGU:模块中的每个函数都放入同一个 CGU 中。然后,如果 CGU 数量超过限制(默认情况下,非增量构建为 16 个,增量构建为 256 个),它会重复合并两个最小的 CGU,直到达到限制。这种方法简单、快速,并以有用的方式利用特定领域的知识——程序模块往往提供良好的自然边界。

所有这一切都依赖于测量 CGU 大小的方法。目前使用CGU中的MIR语句的数量来估计LLVM处理CGU需要多长时间。这里有很大的设计空间,有许多其他可能的形成和规划CGU 的方法。

提速Rust编译器!,rust,python,人工智能

这种转换对Rust众多语法糖进行了脱糖,并且极大精简了Rust的语法(但并非其语法子集),是观察和分析Rust代码的常用手段,尤其是在控制流图和借用检查等方面。

在这篇文章的最后,Nethercote提供了几个数据集的链接,每个数据集都记录了编译rust -performance基准时每个CGU的测量值。这些数据集包括许多测量静态代码大小的输入(独立变量),例如,函数数量和MIR数量等。

Nethercote试着用scikit-learn做一些基本的分析。并且,通过这些基本的分析,能让Nethercote仔细推敲到底应该搜集哪些测量值。

通过一系列的改进优化,他获得的最终数据集比刚开始时的数据更准确。但是,并没有通过这些数据获得多少实际的结果。实际上,每次我对测量的内容改变后都会得到完全不同的结果。

3、实现更快的Lexer

词法分析(lexical analysis)是编译器的第一个阶段,实现词法分析的代码称为lexer。

有人最近研究了logos(https://github.com/maciejhirsz/logos)这个在rust中广受欢迎的lexer。

此前,logos声称其目标是能比手动实现的lexer更快,作者提出了质疑,因为在他看来,通用性和性能无法兼得。因此,他一步步实现了lexer,探索了多种优化技巧,并与logos进行了多轮性能对比。

最终的结果表明,手动实现的基于状态机的lexer比logos实现了20%左右的性能提升。

4、从错误中学习:使用Rust实现DLL注入

Rust是一种注重安全性的编程语言,但在某些情况下,开发人员可能需要使用unsafe关键字来执行某些操作。unsafe可以提供更高的性能,但可能会牺牲安全性。因此,开发人员在使用时需要非常小心。几个使用unsafe的常见场景包括:访问裸指针、调用外部C函数等,并提供了一些建议和最佳实践,以确保在使用unsafe时不会引入潜在的安全隐患。

举个应用方面的例子:原来,作者一直在用C++编写逆向工具,但是,C++这门语言并不友好,于是研究了下如何使用Rust实现DLL注入的“工具”。

大致原理就是让Rust首先生成一个C样式的DLL,然后,使用unsafe操作裸指针,操作程序内存,最后实现DLL注入就可以了。

5、期待更准确的估计函数

Nethercote 希望具有数据分析专业知识的人可以做得更好,重点关注以下几个方面:

1)更匹配的估计函数

2)想要使编译器比现在更快,一个更好的估计函数也许不会达到预期的效果。我提出了一些更好的统计方法,但并没有提升编译速度,甚至变差。

3)CGU调度效果不可预测,你不能假设一个估计函数好几个百分点就会使编译器更快。话虽如此,我希望改进力度足够大,能够转化为实际的加速。

4)对于估计函数来说,最好高估CGU编译所需的时间,而不是低估。

5)我很担心过度拟合。数据集来自一台机器,但实际上,rustc会运行在不同的机器上,具有各种各样的体系结构和微体系结构。

6)这些数据集来自单一版本的rustc,使用单一版本的LLVM。我担心随着时间的推移准确性可能会漂移。

7)我更喜欢不太复杂且易于理解的估计函数。当前的函数非常简单,在大多数情况下只是增加了基本模块和语句的数量。例如:0大小的CGU应该别估计为花费非常接近于0的时间。

8)估计函数有一个明确的问题,即如果不考虑其内部公式,计算MIR语句可能非常不准确。特别是,单个MIR语句可能变得很长。举个例子:深度向量压力测试的MIR包含一条语句,该语句定义了包含超过100,000个元素的向量字面量。不出所料,当前的估计函数严重低估了编译这个基准所需的时间。

Nethercote最后提醒:希望以上的请求是合理的!

以下是上文提到的数据集:

  • 调试构建,主要基准测试

https://nnethercote.github.io/aux/2023/07/25/Debug-Primary.txt

  • 选择构建,主要基准

https://nnethercote.github.io/aux/2023/07/25/Opt-Primary.txt

  • 调试构建,二级基准测试

https://nnethercote.github.io/aux/2023/07/25/Debug-Secondary.txt

  • 选择构建,二级基准

https://nnethercote.github.io/aux/2023/07/25/Opt-Secondary.txt

  • 顺便说一句:在这些数据集中,主要基准测试比次要基准测试更重要,次要基准测试包括压力测试、微基准测试和其它不符合实际的代码。

相关内容拓展:(技术前沿)

近10年间,甚至连传统企业都开始大面积数字化时,我们发现开发内部工具的过程中,大量的页面、场景、组件等在不断重复,这种重复造轮子的工作,浪费工程师的大量时间。

针对这类问题,低代码把某些重复出现的场景、流程,具象化成一个个组件、api、数据库接口,避免了重复造轮子。极大的提高了程序员的生产效率。

推荐一款程序员都应该知道的软件JNPF快速开发平台,采用业内领先的SpringBoot微服务架构、支持SpringCloud模式,完善了平台的扩增基础,满足了系统快速开发、灵活拓展、无缝集成和高性能应用等综合能力;采用前后端分离模式,前端和后端的开发人员可分工合作负责不同板块,省事又便捷。

体验官网:https://www.jnpfsoft.com/?csdn,还没有了解低代码这项技术可以赶紧体验学习!

参考资料:

1.https://nnethercote.github.io/2023/07/25/how-to-speed-up-the-rust-compiler-data-analysis-assistance-requested.html

2.https://geo-ant.github.io/blog/2023/unsafe-rust-exploration/

3.https://nnethercote.github.io/2023/07/11/back-end-parallelism-in-the-rust-compiler.html文章来源地址https://www.toymoban.com/news/detail-638305.html

到了这里,关于提速Rust编译器!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python有哪些编译器

    python有哪些编译器 1、Brython把Python转换成Javascript代码。 是一个流行的Python编译器,它可以把Python转换成Javascript代码。该软件支持所有网络浏览器(包括手机网络浏览器)。 它还支持最新的Html5/CSS3标准,可以使用流行的CSS框架,如BootStrap3和LESS。 2、Pyjs是一个轻量级的Python编译

    2024年02月05日
    浏览(49)
  • 【python】python编译器以及安装

    ✅作者简介:一名在读大二学生,希望大家多多支持 🔥系列专栏:python 💬个人主页:小园园子的CSDN博客 详细内容 为什么会有编译器/解释器? 编译器与解释器 编译器/解释器:高级语言与机器之间的翻译官 都是将代码翻译成机器可以执行的二进制机器码,只不过在运行原

    2024年02月16日
    浏览(45)
  • Python编译器Pycharm使用技巧

                                                                                     欢迎来到mo的python学习之路  目录                                 pycharm一些小技巧  1.更换pycharm主题颜色  1.1默认颜色 1.2设置其他颜色  2.汉化 2.1具体操作  3. 创建python包和文件

    2024年02月15日
    浏览(58)
  • 初学Python,用什么编译器最好呢?

    新手学Python用什么编辑器比较好?工欲善其事必先利其器,选好工具学习更高效。市面上流行的编辑器众多,根据自己的需求选择适合自己。小白选择什么编译器比较好呢?今天主要介绍SublimeText、IDLE、VIM、PyCharm、Emacs编辑器,看它们都有什么功能,挑一个最适合小白学习的

    2024年02月09日
    浏览(48)
  • python编程——编译器与解释器

    作者: Insist-- 个人主页: insist--个人主页 本文专栏: python专栏 专栏介绍: 本专栏为 免费 专栏,并且会持续更新python基础知识,欢迎各位订阅关注。 目录 一、编译器与解释器的介绍 二、编译器与解释器的区别 三、python编译器与解释器种类 1、Brython 2、winPython 3、Pyjs 四、

    2024年02月07日
    浏览(69)
  • python语言在线编译器,python 在线编程工具

    大家好,小编来为大家解答以下问题,python语言在线编译器,python 在线编程工具,今天让我们一起来看看吧! 1.python在线编译器的解决方案 方案一:vscode web版(vscode online) 大名鼎鼎的vscode 推出了web版,也就是说可以在网页上进行编程了。 github地址:https://github.com/microsoft/v

    2024年04月26日
    浏览(42)
  • python解析器和pycharm编译器安装

    python解析器下载地址:https://www.python.org/getit/ 注意事项: 1. 建议下载3.6以以上的版本, 2. 官网下载比较慢,可以自行寻找其它网站下载, 3. 建议使用.exe安装包方式下载安装 下载完成后双击运行 验证是否安装成功: pycharm编译器下载地址:https://www.jetbrains.com/zh-cn/pycharm/dow

    2024年02月17日
    浏览(45)
  • Anaconda虚拟环境配置Python库与Spyder编译器

      本文介绍在 Anaconda 中,为 Python 的虚拟环境安装 第三方库 与 Spyder 等 配套软件 的方法。   在文章创建Anaconda虚拟Python环境的方法中,我们介绍了在 Anaconda 环境下,创建、使用与删除 Python 虚拟环境的方法;而创建虚拟环境后,就需要在 对应的环境内 配置各类 库 与

    2024年02月08日
    浏览(46)
  • 手机上有python编译器吗,手机上可以用的python

    本篇文章给大家谈谈手机上有python编译器吗,以及手机上可以用的python,希望对各位有所帮助,不要忘了收藏本站喔。 Source code download: 本文相关源码 这篇文章主要介绍了python软件可以在手机上运行吗怎么操作,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这

    2024年02月20日
    浏览(62)
  • 手机上能用的python编译器,手机python3.9编程软件

    大家好,小编为大家解答手机可以用的python编程软件有哪些的问题。很多人还不知道手机可以用的python编程软件下载,现在让我们一起来看看吧! 本篇文章给大家谈谈安卓手机python编程软件,以及安卓好用的python编辑器,希望对各位有所帮助,不要忘了收藏本站喔。 1、手机

    2024年01月23日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包