【多维定向滤波器组和表面波】表面变换:用于高效表示多维 s 的多分辨率变换(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了【多维定向滤波器组和表面波】表面变换:用于高效表示多维 s 的多分辨率变换(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

【多维定向滤波器组和表面波】表面变换:用于高效表示多维 s 的多分辨率变换(Matlab代码实现),matlab,开发语言

1992年,班贝格和史密斯提出了定向滤波器组(DFB),用于2D信号的有效定向分解。由于系统的不可分离性,将DFB扩展到更高的维度,同时仍保留其吸引人的功能是一个具有挑战性且以前未解决的问题。我们提出了一个名为NDFB的新滤波器组系列,它可以通过简单高效的树形结构实现任意N维(Nges2)信号的定向分解。在三维中,所提出的NDFB的理想通带是基于矩形的金字塔,从原点向不同方向辐射并平铺整个频率空间。所提出的NDFB通过N-D冗余因子为N的迭代滤波器组实现了完美的重构。所提出的NDFB的角分辨率可以通过简单的展开规则调用更多级别的分解来迭代细化。通过将NDFB与新的多尺度金字塔相结合,我们提出了表面变换,可用于在多维数据中有效地捕获和表示类似表面的奇点 

原文摘要:

Abstract:

In 1992, Bamberger and Smith proposed the directional filter bank (DFB) for an efficient directional decomposition of 2-D signals. Due to the nonseparable nature of the system, extending the DFB to higher dimensions while still retaining its attractive features is a challenging and previously unsolved problem. We propose a new family of filter banks, named NDFB, that can achieve the directional decomposition of arbitrary N-dimensional (Nges2) signals with a simple and efficient tree-structured construction. In 3-D, the ideal passbands of the proposed NDFB are rectangular-based pyramids radiating out from the origin at different orientations and tiling the entire frequency space. The proposed NDFB achieves perfect reconstruction via an iterated filter bank with a redundancy factor of N in N-D. The angular resolution of the proposed NDFB can be iteratively refined by invoking more levels of decomposition through a simple expansion rule. By combining the NDFB with a new multiscale pyramid, we propose the surfacelet transform, which can be used to efficiently capture and represent surface-like singularities in multidimensional data

随着现代计算机和成像设备功能的增长,高分辨率 3D 甚至更高维度的体积数据越来越多地用于广泛的应用,包括生物医学成像、地震成像、河外天文学、计算机视觉以及视频处理和压缩。为了有效地分析和表示如此大量的数据,我们需要创建和使用来自各个工程领域的新工具,包括信号处理。在本文中,我们提出了一套新的工具,即N-维度定向滤波器组 (NDFB) 和表面,可以捕获和表示位于光滑表面上的信号奇异点。这种奇点通常在3D医学图像中观察到,其中图像大多是平滑的,除了在某些边界表面上,以及在视频信号中,移动物体在3-D空间/时间空间中雕刻出光滑的表面。

对于2-D信号,沿着平滑曲线捕获奇点的类似问题已经得到了广泛的研究。在不声称详尽无遗的情况下,我们想举几个例子,包括可操纵金字塔 [1]、定向滤波器组 [2]、二维定向小波 [2]、曲线 [3]、复杂小波 [4]、[5]、轮廓 [6]、带状 [7] 和剪切 [8]。在所有这些二维表示中,我们特别感兴趣的一种方法是定向滤波器组(DFB),它最初由班贝格和史密斯[2]提出,随后由几位作者[2]-[10]改进。德国足协通过l-级树结构分解,导致2l具有楔形频率分区的子带,如图1(a)所示。同时,DFB是一种非冗余变换,并提供完美的重建,即原始信号可以从其抽取的通道中精确重建。DFB的方向选择性和高效结构使其成为许多图像处理应用的有吸引力的候选者。通过将DFB与拉普拉斯金字塔相结合,Do和Vetterli [7]构建了轮廓,为稀疏图像表示提供了定向多分辨率变换。

📚2 运行结果

【多维定向滤波器组和表面波】表面变换:用于高效表示多维 s 的多分辨率变换(Matlab代码实现),matlab,开发语言

【多维定向滤波器组和表面波】表面变换:用于高效表示多维 s 的多分辨率变换(Matlab代码实现),matlab,开发语言

【多维定向滤波器组和表面波】表面变换:用于高效表示多维 s 的多分辨率变换(Matlab代码实现),matlab,开发语言 【多维定向滤波器组和表面波】表面变换:用于高效表示多维 s 的多分辨率变换(Matlab代码实现),matlab,开发语言

【多维定向滤波器组和表面波】表面变换:用于高效表示多维 s 的多分辨率变换(Matlab代码实现),matlab,开发语言

 部分代码:

%% We add Gaussian noise to the video sequence
disp(' ');
disp('Step 2: Add white Gaussian noise to the sequence.');
sigma = 20; % standard deviation
Xn = double(X) + sigma * randn(size(X));
r = input('Press <enter> to play the noisy sequence ...');
PlayImageSequence(uint8(Xn));

%% Surfacelet Denoising
disp(' ');
disp('Step 3: Apply surfacelet transform on the noisy sequence and hard-threshold the coefficients');
r = input('Press <enter> to continue ...');

disp(' ');
disp('Processing ...');

Pyr_mode = 1.5; % For better performance, choose Pyr_mode = 1. However, this setting requires more RAMs.
Xd = surfacelet_denoising_3D(Xn, Pyr_mode, sigma);
Xd(Xd > 255) = 255;
Xd(Xd < 0) = 0;


disp('Done!');
disp(' ');
r = input('Press <enter> to show the denoised sequence ...');
skip = 10; % To exclude the boundary effect
PlayImageSequence(uint8(Xd(:,:, skip+1 : end - skip)));

% Plot the frame-by-frame PSNR values
PSNR_surf = zeros(size(Xd, 3) - 2 * skip, 1);
for n = skip+1 : size(Xd, 3) - skip
   PSNR_surf(n - skip) = PSNR(double(X(:,:, n)), Xd(:,:,n)); 
end

figure
plot([(skip+1) : (size(Xd, 3) - skip)], PSNR_surf);
axis tight;
title(['Average PSNR = ' num2str(mean(PSNR_surf))], 'FontSize', 12);
xlabel('Frame Number', 'FontSize', 12);
ylabel('PSNR (dB)', 'FontSize', 12);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

【多维定向滤波器组和表面波】表面变换:用于高效表示多维 s 的多分辨率变换(Matlab代码实现),matlab,开发语言

 Multidimensional Directional Filter Banks and Surfacelets | IEEE Journals & Magazine | IEEE Xplore文章来源地址https://www.toymoban.com/news/detail-638596.html

🌈4 Matlab代码实现

到了这里,关于【多维定向滤波器组和表面波】表面变换:用于高效表示多维 s 的多分辨率变换(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python实现陷波滤波器、低通滤波器、高斯滤波器、巴特沃斯滤波器

    在一幅图像中,其低频成分对应者图像变化缓慢的部分,对应着图像大致的相貌和轮廓,而其高频成分则对应着图像变化剧烈的部分,对应着图像的细节(图像的噪声也属于高频成分)。 低频滤波器,顾名思义,就是过滤掉或者大幅度衰减图像的高频成分,让图像的低频成分

    2024年02月11日
    浏览(40)
  • 高通滤波器,低通滤波器

    1.高通滤波器是根据像素与邻近像素的亮度差值来提升该像素的亮度。   确实容易看出,第三种效果最好。 2. 使用medianBlur()作为模糊函数,它对去除数字化的视频噪声非常有效。  从BGR色彩空间转灰度色彩空间   使用Laplacian()作为边缘检测函数,它会产生明显的边缘线条 

    2024年02月14日
    浏览(34)
  • 【图像处理:频率域平滑与锐化】理想滤波器,巴特沃思滤波器,高斯滤波器

    本文主要介绍频率域滤波器,此处的频率域是基于傅立叶变换得出。 在一幅图像中, 低频对应图像变化缓慢的部分 ,即图像大致外观和轮廓。 高频部分对应图像变化剧烈的部分即图像细节 。低通滤波器的功能是让低频率通过而滤掉或衰减高频,其作用是过滤掉包含在高频

    2024年02月04日
    浏览(49)
  • 【状态估计】卡尔曼滤波器、扩展卡尔曼滤波器、双卡尔曼滤波器和平方根卡尔曼滤波器研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 本文包括

    2024年02月08日
    浏览(43)
  • 现代信号处理——自适应滤波器(匹配滤波器)

    信号处理的目的是从噪声中提取信号,得到不受干扰影响的真正信号。采用的处理系统称为滤波器。 实时信号处理中,希望滤波器的参数可以根据系统或环境的变化进行更新,称为自适应滤波器。 滤波器的分类: 线性滤波器、非线性滤波器; FIR滤波器、IIR滤波器; 时域滤

    2023年04月27日
    浏览(67)
  • 图像处理之理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器的matlab简单实现

    一、前言 高通滤波器的功能是让高频率通过而滤掉或衰减低频,其作用是 使图像得到锐化处理,突出图像的边界 。经理想高频滤波后的图像把信息丰富的低频去掉了,丢失了许多必要的信息**。一般情况下,高通滤波对噪声没有任何抑制作用**,若简单的使用高通滤波,图像质

    2023年04月25日
    浏览(41)
  • 【状态估计】粒子滤波器、Σ点滤波器和扩展/线性卡尔曼滤波器研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 扩展卡尔曼滤波 2.2 线性卡尔曼滤波 

    2024年02月09日
    浏览(41)
  • 图像处理之高通滤波器与低通滤波器

    目录 高频与低频区分: 高通滤波器: 1.傅里叶变换: 低通滤波器: 总结:         在了解图像滤波器之前,先谈一下如何区分图像的高频信息和低频信息,所谓高频就是该像素点与周围像素差异较大,常见于一副图像的边缘细节和噪声等;而低频就是该像素点与周围像素

    2023年04月09日
    浏览(46)
  • 现代信号处理——自适应滤波器(LMS自适应滤波器)

    一、自适应滤波简介 维纳滤波存在的问题: 适用于平稳随机信号的最佳滤波,对于非平稳的随机信号,其统计特性(相关函数)是随机的,因此无法估计其相关函数,此时的维纳滤波不适用; 维纳滤波器的参数是固定的,就不可能根据输入信号的变换去自动调整滤波器的参

    2024年02月01日
    浏览(48)
  • 卡尔曼滤波器简介——α−β−γ滤波器

            现在我们已经准备好了第一个简单的例子。在此示例中,我们估计静态系统的状态。静态系统是在合理的时间段内不会更改其状态的系统。例如,静态系统可以是一座塔,而状态将是它的高度。         在此示例中,我们估计金条的重量。我们有无偏尺度,即

    2024年02月01日
    浏览(110)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包