《JavaSE-第十七章》之LinkedList

这篇具有很好参考价值的文章主要介绍了《JavaSE-第十七章》之LinkedList。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

在你立足处深挖下去,就会有泉水涌出!别管蒙昧者们叫嚷:“下边永远是地狱!”

博客主页:KC老衲爱尼姑的博客主页

博主的github,平常所写代码皆在于此

刷题求职神器

共勉:talk is cheap, show me the code

作者是爪哇岛的新手,水平很有限,如果发现错误,一定要及时告知作者哦!感谢感谢!


LinkedList概述

LinkedList底层是基于双链表实现,内部使用节点存储数据,相比于数组而言,LinkedList删除和插入元素的效率远高于数组,而查找和修改的效率比数组要低。

数据结构

《JavaSE-第十七章》之LinkedList,Java,java,数据结构,开发语言

LinkedList的继承关系

《JavaSE-第十七章》之LinkedList,Java,java,数据结构,开发语言

说明

  1. LinkedList实现了List接口,说明LinkedList可以当做一个顺序存储的容器
  2. LinkedList实现了Queue接口,说明LinedList可以当做一个队列使用
  3. LinkedList实现了Serializable,说明支持序列化
  4. LinkedList是实现了Cloneable,说明支持克隆

属性

    //记录链表长度
    transient int size = 0;

  	//头指针
    transient Node<E> first;

	//尾指针
    transient Node<E> last;

构造方法

无参构造
public LinkedList() {
 }
有参构造
   public LinkedList(Collection<? extends E> c) {
        this();
        //将集合中的元素添加到链表中
        addAll(c);
    }
//将指定集合中的元素添加到链表中
    public boolean addAll(Collection<? extends E> c) {
        return addAll(size, c);
    }

    public boolean addAll(int index, Collection<? extends E> c) {
        //检查index是否合法
        checkPositionIndex(index);
		//将结合转换成数组
        Object[] a = c.toArray();
        //得到数组的长度
        int numNew = a.length;
        //判读数组长度是否为0
        if (numNew == 0)
            return false;
		//定义一个节点pred为前驱,succ为后继
        Node<E> pred, succ;
        //数组长度如果等于链表长度,向链表尾部添加元素
        if (index == size) {
            succ = null;//将后继置空
            pred = last;//将链表的最后一个节点的引用赋值给pred
        } else {
            //index不等于size,则说明是插入链表中间位置
            succ = node(index);//index位置节点的引用
            pred = succ.prev;//index位置前一个节点的引用
        }
		//遍历数组,每遍历一个数组元素,就创建一个节点,再将它插入链表相应位置
        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;//强制类型转换
            Node<E> newNode = new Node<>(pred, e, null);//构造节点
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;//插入元素
            //更新pred为新节点的引用
            pred = newNode;
        }
		
        if (succ == null) {
            //如果是从尾部开始插入的,让last指向最后一个插入的节点
            last = pred;
        } else {
             //如果不是从尾部插入的,则把尾部的数据和之前的节点连起来
            pred.next = succ;
            succ.prev = pred;
        }

        size += numNew;//更新链表长度
        modCount++;
        return true;
    }

内部类Node

    private static class Node<E> {
        E item;//链表中的数据域
        Node<E> next;//记录当前节点的后一个节点的引用
        Node<E> prev;//记录当前节点的前一个节点的引用

        Node(Node<E> prev, E element, Node<E> next) {//初始化节点
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

LinkedLsit特有方法

源码如下

1.addFirst()

    public void addFirst(E e) {
        linkFirst(e);
    }
    //头插
     private void linkFirst(E e) {
        final Node<E> f = first;//获取到头节点的引用
        final Node<E> newNode = new Node<>(null, e, f);
        first = newNode;//更新first的指向
        if (f == null)//如果为空则说明链表为空
            last = newNode;//让尾指针指向新节点
        else
            f.prev = newNode;//
        size++;//长度自增
        modCount++;
    }

代码示例

public class Demo {
    public static void main(String[] args) {
        LinkedList<Integer> list = new LinkedList<Integer>();
        list.addFirst(1);
        list.addFirst(2);
        list.addFirst(3);
        System.out.println(list);
    }
}
//运行结果
//[3, 2, 1]

图解头插

《JavaSE-第十七章》之LinkedList,Java,java,数据结构,开发语言

2.addLast()

源码如下

public void addLast(E e) {
        linkLast(e);//尾插
}
 //尾插具体实现
  void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
}

代码示例

public class Demo {
    public static void main(String[] args) {
        LinkedList<Integer> list = new LinkedList<Integer>();
        list.addLast(1);
        list.addLast(2);
        list.addLast(3);
        System.out.println(list);
    }
}
//运行结果
//[1, 2, 3]

图解尾插

《JavaSE-第十七章》之LinkedList,Java,java,数据结构,开发语言

3.getFirst()

源码如下

  public E getFirst() {
        final Node<E> f = first;//得到first引用
        if (f == null)//链表中无节点
            throw new NoSuchElementException();//抛出异常
        return f.item;//返回头节点的数据
    }

4.getLast()

源码如下

public E getLast() {
        final Node<E> l = last;//得到last引用
        if (l == null)//链表中无节点
            throw new NoSuchElementException();//抛出异常
        return l.item;//返回头节点的数据
    }

5.removeFirst()

源码如下

     public E removeFirst() {
        final Node<E> f = first;//得到头节点的引用
        if (f == null)//如果为null则没有头节点
            throw new NoSuchElementException();//抛出异常
        return unlinkFirst(f);//删除操作
      }
	  //删除链表第一个节点
      private E unlinkFirst(Node<E> f) {
        // assert f == first && f != null;
        final E element = f.item;//得到头节点的数据
        final Node<E> next = f.next;//得到第二个节点的引用
        f.item = null;//将头节点数据域置空
        f.next = null; //将头节点next域置空
        first = next;//更新first指针的指向
        if (next == null)//next等于null,说明只有一个节点
            last = null;
        else
            next.prev = null;//将第二个节点的preve置空
        size--;//长度-1
        modCount++;
        return element;//返回要删除头节点的数据
    }

6.removeLast()

源码如下

  public E removeLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();//抛出异常
        return unlinkLast(l);
    }
     //删除链表最后个节点
    private E unlinkLast(Node<E> l) {
        // assert l == last && l != null;
        final E element = l.item;
        final Node<E> prev = l.prev;
        l.item = null;
        l.prev = null; // help GC
        last = prev;
        if (prev == null)
            first = null;
        else
            prev.next = null;
        size--;
        modCount++;
        return element;
    }

List接口

核心方法

1.add(E e)

源码如下

  public boolean add(E e) {
        linkLast(e);
        return true;
    }
   //尾插
    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }

2.add(int index, E element)

源码如下

  public void add(int index, E element) {
        checkPositionIndex(index);//检查index合法性

        if (index == size)//如果相等,插入到尾部
            linkLast(element);//尾插
        else//非尾部位置
            linkBefore(element, node(index));//
    }
    private void checkPositionIndex(int index) {
        if (!isPositionIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

	private boolean isPositionIndex(int index) {
        return index >= 0 && index <= size;
    }

   void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }

   void linkBefore(E e, Node<E> succ) {
        //succ为要插入位置的节点,同时也是你要插入该位置节点的后继
        final Node<E> pred = succ.prev;//得到插入位置的前驱
        final Node<E> newNode = new Node<>(pred, e, succ);//将元素,以及前驱和后继传入
        succ.prev = newNode;//更新插入位置节点的前驱为要插入节点的引用
        if (pred == null)//如果pred为空说明,要插入的节点已经跑到头节点之前了,需要重置头节点
            first = newNode;
        else
            pred.next = newNode;//否则的话将pred的next域指向新节点即可
        size++;
        modCount++;
    }

    //寻找指定位置的节点
    Node<E> node(int index) {
       //如果index靠近链表的前部分,则从头开始遍历寻找要找的节点
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {//靠近后半部分,则倒着寻找
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

3.remove(int index)

源码如下

  public E remove(int index) {
        checkElementIndex(index);//检查index合法性
        return unlink(node(index));
    }
	//删除index位置的具体操作
   E unlink(Node<E> x) {
        
        final E element = x.item;//要删除节点的值
        final Node<E> next = x.next;//要删除节点的后一个节点的引用
        final Node<E> prev = x.prev;//要删除节点的前一个节点
		//如果prev为空意味着删除的节点是头节点,否则就不是头节点
        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;//要删除的节点prev域置空
        }
		//如果prev为空意味着删除的节点是尾节点,否则就不是尾节点
        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;//要删除的节点next域置空
        }

        x.item = null;//将要删除节点的数据域置空
        size--;//链表的长度减一
        modCount++;
        return element;//返回删除节点的数据域的值
    }

4.get(int index)

源码如下

   public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }
    //寻找指定位置的节点
    Node<E> node(int index) {
       //如果index靠近链表的前部分,则从头开始遍历寻找要找的节点
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {//靠近后半部分,则倒着寻找
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

5.set(int index, E element)

源码如下

    public E set(int index, E element) {
        checkElementIndex(index);
        Node<E> x = node(index);
        E oldVal = x.item;
        x.item = element;
        return oldVal;
    }

   Node<E> node(int index) {
        // assert isElementIndex(index);

        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

上述的get()和set()方法中的node()方法是以二分查找来看index位置距离size的一半位置,在决定从头遍历还是从尾遍历。以o(n/2)的效率得到一个节点。

6.indexOf(Object o)

源码如下

//从头往尾找该元素第一次出现的下标
    public int indexOf(Object o) {
        int index = 0;
        //元素为null
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null)
                    return index;
                index++;
            }
        } else {
            //元素不为null
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item))
                    return index;
                index++;
            }
        }
        return -1;//在链表中找不到
    }

7.lastIndexOf(Object o)

源码如下

//从尾往头找该元素第一次出现的下标
    public int lastIndexOf(Object o) {
        int index = size;
        if (o == null) {
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (x.item == null)
                    return index;
            }
        } else {
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (o.equals(x.item))
                    return index;
            }
        }
        return -1;
    }

8.clear()

源码如下

    //清空链表
    public void clear() {
		//遍历链表将每个节点中next,prve,item全部置空
        for (Node<E> x = first; x != null; ) {
            Node<E> next = x.next;
            x.item = null;
            x.next = null;
            x.prev = null;
            x = next;
        }
        first = last = null;//头尾引用都置空
        size = 0;//长度值为0
        modCount++;
    }

总结

  • LinkedList 插入,删除都是移动指针效率很高。
  • 查找需要进行遍历查询,效率较低。

ArrayList与LinkedList的区别

  1. ArrayList底层是基于数组实现,LinkedList基于双链表实现
  2. ArrayList在物理上是一定连续的,而LinkedList在物理上不一定连续,在逻辑上连续
  3. ArrayList访问随机访问元素的时间复杂度为o(1),LinkedList则为o(n)
  4. 头插入元素时,ArrayList需要搬运元素,时间复杂度为o(1),链表只需要改变头指针的指向即可,复杂度为o(1)
  5. ArrayList适用于频繁的访问元素,以及高效的存储元素上,LinkedList适应于任意位置插入和频繁删除元素的场景

《JavaSE-第十七章》之LinkedList,Java,java,数据结构,开发语言文章来源地址https://www.toymoban.com/news/detail-638834.html

到了这里,关于《JavaSE-第十七章》之LinkedList的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 第十七章行为性模式—状态模式

    行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式: 类行为模式:采用继承机制来在类间分派行为 对象行为模式:

    2024年02月07日
    浏览(39)
  • 《微服务实战》 第十七章 Redis下载与安装

    第二十八章 分布式锁框架-Redisson 第二十四章 Spring boot 操作 Redis 第二十三章 Redis RDB AOF 第二十一、二十二章 Redis发布订阅、事务;HyperLoglog基数统计 第二十章 Redis连接指令 客户端指令 服务器指令 第十九章 Redis key 第十八章 Redis查看配置文件和数据类型 第十七章 Redis下载与安

    2024年02月06日
    浏览(34)
  • 第十七章 Unity 预制件prefab(下)

    本章节我们来讲解如何编辑预制体文件。这里介绍三种打开编辑预制件的方式。第一就是通过预制件的实例游戏对象的Inspector检视面板上面的预制件“打开”按钮。 第二就是在Project工程面板中选中预制件文件(Cube.prefab),然后在Inspector检视面板中点击“打开预制件”。 第

    2024年02月04日
    浏览(28)
  • 离散数学复习---第十七章 平面图【概念版】

    目录 17.1 平面图的基本概念 17.2  欧拉公式 17.3  平面图的判断 17.4  平面图的对偶图 定义17.1   如果能将无向图G画在平面上使得除顶点外处处无边相交,则称G为 可平面图 ,简称为 平面图 。画出的无边相交的图称为G的 平面嵌入 。无平面嵌入的图称为 非平面图 。 定理17.

    2024年02月05日
    浏览(37)
  • 【JavaSE专栏49】Java集合类LinkedList解析,链表和顺序表有什么不同?

    作者主页 :Designer 小郑 作者简介 :3年JAVA全栈开发经验,专注JAVA技术、系统定制、远程指导,致力于企业数字化转型,CSDN学院、蓝桥云课认证讲师。 主打方向 :Vue、SpringBoot、微信小程序 本文讲解了 Java 中集合类 LinkedList 的语法、使用说明和应用场景,并给出了样例代码

    2024年02月16日
    浏览(40)
  • Hotspot源码解析-第十七章-虚拟机万物创建(三)

    分配Java堆内存前,我们先通过两图来了解下C堆、Java堆、内核空间、native本地空间的关系。 1、从图17-1来看,Java堆的分配其实就是从Java进程运行时堆中选中一块内存区域来映射 2、从图17-2,可以看中各内存空间的关系,当然实际的内存区域比这个复杂的多,这里只是概括说

    2024年01月25日
    浏览(33)
  • 【JavaSE】Java基础语法(三十七):Java 中的 String 类(源码级别)

    String 表示 字符串类型,属于 引用数据类型 。Java 中 String 是 不可变 的。 在 Java 当中 双引号 括起来的字符串,是直接存储在“方法区”的“字符串常量池”当中的。 源码: 源码: 源码: 源码: 源码: 源码: 源码: 源码: https://blog.csdn.net/qq_44715943/article/details/116308837

    2024年02月06日
    浏览(47)
  • 【新版系统架构】第十七章-通信系统架构设计理论与实践

    软考-系统架构设计师知识点提炼-系统架构设计师教程(第2版) 第一章-绪论 第二章-计算机系统基础知识(一) 第二章-计算机系统基础知识(二) 第三章-信息系统基础知识 第四章-信息安全技术基础知识 第五章-软件工程基础知识(一) 第五章-软件工程基础知识(需求工

    2024年02月15日
    浏览(44)
  • 【Rust】Rust学习 第十七章Rust 的面向对象特性

    面向对象编程(Object-Oriented Programming,OOP)是一种模式化编程方式。对象(Object)来源于 20 世纪 60 年代的 Simula 编程语言。这些对象影响了 Alan Kay 的编程架构中对象之间的消息传递。他在 1967 年创造了  面向对象编程  这个术语来描述这种架构。关于 OOP 是什么有很多相互矛

    2024年02月11日
    浏览(45)
  • Go学习第十七章——Gin中间件与路由

    Gin框架允许开发者在处理请求的过程中,加入用户自己的钩子(Hook)函数。这个钩子函数就叫中间件,中间件适合处理一些公共的业务逻辑,比如登录认证、权限校验、数据分页、记录日志、耗时统计等 即比如,如果访问一个网页的话,不管访问什么路径都需要进行登录,

    2024年02月07日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包