1、Spark SQL 概述

这篇具有很好参考价值的文章主要介绍了1、Spark SQL 概述。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、Spark SQL 概述

Spark SQL概念

  • Spark SQL is Apache Spark’s module for working with structured data.
    • 它是spark中用于处理结构化数据的一个模块

Spark SQL历史

  • Hive是目前大数据领域,事实上的数据仓库标准。

1、Spark SQL 概述,# spark,# hive,spark,sql,大数据

  • Shark:shark底层使用spark的基于内存的计算模型,从而让性能比Hive提升了数倍到上百倍。
  • 底层很多东西还是依赖于Hive,修改了内存管理、物理计划、执行三个模块
  • 2014年6月1日的时候,Spark宣布了不再开发Shark,全面转向Spark SQL的开发

Spark SQL优势

  • Write Less Code

1、Spark SQL 概述,# spark,# hive,spark,sql,大数据

  • Performance

1、Spark SQL 概述,# spark,# hive,spark,sql,大数据

python操作RDD,转换为可执行代码,运行在java虚拟机,涉及两个不同语言引擎之间的切换,进行进程间 通信很耗费性能。

DataFrame

  • 是RDD为基础的分布式数据集,类似于传统关系型数据库的二维表,dataframe记录了对应列的名称和类型
  • dataFrame引入schema和off-heap(使用操作系统层面上的内存)
    • 1、解决了RDD的缺点
    • 序列化和反序列化开销大
    • 频繁的创建和销毁对象造成大量的GC
    • 2、丢失了RDD的优点
    • RDD编译时进行类型检查
    • RDD具有面向对象编程的特性

用scala编写的RDD比Spark SQL编写转换的RDD慢,涉及到执行计划

  • CatalystOptimizer:Catalyst优化器
  • ProjectTungsten:钨丝计划,为了提高RDD的效率而制定的计划
  • Code gen:代码生成器

1、Spark SQL 概述,# spark,# hive,spark,sql,大数据

直接编写RDD也可以自实现优化代码,但是远不及SparkSQL前面的优化操作后转换的RDD效率高,快1倍左右

优化引擎:类似mysql等关系型数据库基于成本的优化器

首先执行逻辑执行计划,然后转换为物理执行计划(选择成本最小的),通过Code Generation最终生成为RDD

  • Language-independent API

    用任何语言编写生成的RDD都一样,而使用spark-core编写的RDD,不同的语言生成不同的RDD

  • Schema

    结构化数据,可以直接看出数据的详情

    在RDD中无法看出,解释性不强,无法告诉引擎信息,没法详细优化。

**为什么要学习sparksql **

sparksql特性文章来源地址https://www.toymoban.com/news/detail-638853.html

  • 1、易整合
  • 2、统一的数据源访问
  • 3、兼容hive
  • 4、提供了标准的数据库连接(jdbc/odbc)

到了这里,关于1、Spark SQL 概述的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • hive sql 和 spark sql的区别

    Hive SQL 和 Spark SQL 都是用于在大数据环境中处理结构化数据的工具,但它们有一些关键的区别: 底层计算引擎: Hive SQL:Hive 是建立在 Hadoop 生态系统之上的,使用 MapReduce 作为底层计算引擎。因此,它的执行速度可能相对较慢,尤其是对于复杂的查询。 Spark SQL:Spark SQL 则建

    2024年01月20日
    浏览(40)
  • Spark on Hive及 Spark SQL的运行机制

    代码中集成Hive: Spark SQL底层依然运行的是Spark RDD的程序,所以说Spark RDD程序的运行的流程,在Spark SQL中依然是存在的,只不过在这个流程的基础上增加了从SQL翻译为RDD的过程 Spark SQL的运行机制,其实就是在描述如何将Spark SQL翻译为RDD程序 Catalyst内部具体的执行流程: 专业术

    2024年01月23日
    浏览(50)
  • Spark SQL实战(08)-整合Hive

    Apache Spark 是一个快速、可扩展的分布式计算引擎,而 Hive 则是一个数据仓库工具,它提供了数据存储和查询功能。在 Spark 中使用 Hive 可以提高数据处理和查询的效率。 场景 历史原因积累下来的,很多数据原先是采用Hive来进行处理的,现想改用Spark操作数据,须要求Spark能够

    2023年04月15日
    浏览(92)
  • 在 spark-sql / spark-shell / hive / beeline 中粘贴 sql、程序脚本时的常见错误

    《大数据平台架构与原型实现:数据中台建设实战》一书由博主历时三年精心创作,现已通过知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,京东购书链接:https://item.jd.com/12677623.html,扫描

    2024年02月14日
    浏览(36)
  • Spark-SQL连接Hive的五种方法

    若使用Spark内嵌的Hive,直接使用即可,什么都不需要做(在实际生产活动中,很少会使用这一模式) 步骤: 将Hive中conf/下的hive-site.xml拷贝到Spark的conf/目录下; 把Mysql的驱动copy到jars/目录下; 如果访问不到hdfs,则将core-site.xml和hdfs-site.xml拷贝到conf/目录下; 重启spark-shell;

    2024年02月16日
    浏览(44)
  • Spark On Hive配置测试及分布式SQL ThriftServer配置

    Spark本身是一个执行引擎,而没有管理metadate的能力,当我们在执行SQL的时候只能将SQL转化为RDD提交。而对于一些数据中的元数据Spark并不知道,而Spark能写SQL主要是通过DataFrame进行注册的。 这时候我们就可以借助Hive中的MetaStore进行元数据管理。也就是说把Hive中的metastore服务

    2024年01月21日
    浏览(46)
  • superset连接Apache Spark SQL(hive)过程中的各种报错解决

    我的博客原文:superset连接Apache Spark SQL(hive)过程中的各种报错解决 我们用的是Apache Spark SQL,所以首先需要安装下pyhive Apache Spark SQL连接的格式  安装包下载完成,可以测试是否可以连接hive了。 因为驱动不匹配导致的,返回重新下载依赖包 连接数据库的时候一直报无法连

    2024年04月14日
    浏览(36)
  • 【SparkSQL】SparkSQL的运行流程 & Spark On Hive & 分布式SQL执行引擎

    【大家好,我是爱干饭的猿,本文重点介绍、SparkSQL的运行流程、 SparkSQL的自动优化、Catalyst优化器、SparkSQL的执行流程、Spark On Hive原理配置、分布式SQL执行引擎概念、代码JDBC连接。 后续会继续分享其他重要知识点总结,如果喜欢这篇文章,点个赞👍,关注一下吧】 上一篇

    2024年02月04日
    浏览(48)
  • spark SQL 怎么将一个时间戳字符串转换成hive支持的时间日期类型?

    在 Spark SQL 中,可以使用 to_timestamp 函数将一个时间戳字符串转换成 Hive 支持的时间日期类型。这个函数的语法如下: 其中,timestampStr 表示要转换的时间戳字符串,format 表示时间戳字符串的格式,格式必须与时间戳字符串的实际格式相匹配。如果不指定格式,Spark 会使用默认

    2024年02月11日
    浏览(49)
  • Spark【Spark SQL(二)RDD转换DataFrame、Spark SQL读写数据库 】

    Saprk 提供了两种方法来实现从 RDD 转换得到 DataFrame: 利用反射机制推断 RDD 模式 使用编程方式定义 RDD 模式 下面使用到的数据 people.txt :         在利用反射机制推断 RDD 模式的过程时,需要先定义一个 case 类,因为只有 case 类才能被 Spark 隐式地转换为DataFrame对象。 注意

    2024年02月09日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包