图的遍历之 深度优先搜索和广度优先搜索

这篇具有很好参考价值的文章主要介绍了图的遍历之 深度优先搜索和广度优先搜索。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

深度优先搜索的图文介绍

1. 深度优先搜索介绍

图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。

它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。

显然,深度优先搜索是一个递归的过程。

2. 深度优先搜索图解

2.1 无向图的深度优先搜索

下面以"无向图"为例,来对深度优先搜索进行演示。

图的遍历之 深度优先搜索和广度优先搜索,算法+数据结构,深度优先,宽度优先,算法 

对上面的图G1进行深度优先遍历,从顶点A开始。

图的遍历之 深度优先搜索和广度优先搜索,算法+数据结构,深度优先,宽度优先,算法

第1步:访问A。
第2步:访问(A的邻接点)C。
    在第1步访问A之后,接下来应该访问的是A的邻接点,即"C,D,F"中的一个。但在本文的实现中,顶点ABCDEFG是按照顺序存储,C在"D和F"的前面,因此,先访问C。
第3步:访问(C的邻接点)B。
    在第2步访问C之后,接下来应该访问C的邻接点,即"B和D"中一个(A已经被访问过,就不算在内)。而由于B在D之前,先访问B。
第4步:访问(C的邻接点)D。
    在第3步访问了C的邻接点B之后,B没有未被访问的邻接点;因此,返回到访问C的另一个邻接点D。
第5步:访问(A的邻接点)F。
    前面已经访问了A,并且访问完了"A的邻接点B的所有邻接点(包括递归的邻接点在内)";因此,此时返回到访问A的另一个邻接点F。
第6步:访问(F的邻接点)G。
第7步:访问(G的邻接点)E。

因此访问顺序是:A -> C -> B -> D -> F -> G -> E

2.2 有向图的深度优先搜索

下面以"有向图"为例,来对深度优先搜索进行演示。

图的遍历之 深度优先搜索和广度优先搜索,算法+数据结构,深度优先,宽度优先,算法 

对上面的图G2进行深度优先遍历,从顶点A开始。

图的遍历之 深度优先搜索和广度优先搜索,算法+数据结构,深度优先,宽度优先,算法 

第1步:访问A。
第2步:访问B。
    在访问了A之后,接下来应该访问的是A的出边的另一个顶点,即顶点B。
第3步:访问C。
    在访问了B之后,接下来应该访问的是B的出边的另一个顶点,即顶点C,E,F。在本文实现的图中,顶点ABCDEFG按照顺序存储,因此先访问C。
第4步:访问E。
    接下来访问C的出边的另一个顶点,即顶点E。
第5步:访问D。
    接下来访问E的出边的另一个顶点,即顶点B,D。顶点B已经被访问过,因此访问顶点D。
第6步:访问F。
    接下应该回溯"访问A的出边的另一个顶点F"。
第7步:访问G。

因此访问顺序是:A -> B -> C -> E -> D -> F -> G

广度优先搜索的图文介绍

1. 广度优先搜索介绍

广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。

它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。

2. 广度优先搜索图解

2.1 无向图的广度优先搜索

下面以"无向图"为例,来对广度优先搜索进行演示。还是以上面的图G1为例进行说明。

图的遍历之 深度优先搜索和广度优先搜索,算法+数据结构,深度优先,宽度优先,算法

第1步:访问A。
第2步:依次访问C,D,F。
    在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,C在"D和F"的前面,因此,先访问C。再访问完C之后,再依次访问D,F。
第3步:依次访问B,G。
    在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再访问F的邻接点G。
第4步:访问E。
    在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻接点E。

因此访问顺序是:A -> C -> D -> F -> B -> G -> E

2.2 有向图的广度优先搜索

下面以"有向图"为例,来对广度优先搜索进行演示。还是以上面的图G2为例进行说明。

图的遍历之 深度优先搜索和广度优先搜索,算法+数据结构,深度优先,宽度优先,算法

第1步:访问A。
第2步:访问B。
第3步:依次访问C,E,F。
    在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访问E,F。
第4步:依次访问D,G。
    在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。还是按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。

因此访问顺序是:A -> B -> C -> E -> F -> D -> G

搜索算法的源码

这里分别给出"邻接矩阵无向图"、"邻接表无向图"、"邻接矩阵有向图"、"邻接表有向图"的C/C++/Java搜索算法源码。这里就不再对源码进行说明,please RTFSC;参考源码中的注释进行了解。

1. C语言源码
1.1 邻接矩阵实现的无向图(matrixudg.c)
1.2 邻接表实现的无向图(listudg.c)
1.3 邻接矩阵实现的有向图(matrixdg.c)
1.4 邻接表实现的有向图(listdg.c)

2. C++源码
2.1 邻接矩阵实现的无向图(MatrixUDG.cpp)
2.2 邻接表实现的无向图(ListUDG.cpp)
2.3 邻接矩阵实现的有向图(MatrixDG.cpp)
2.4 邻接表实现的有向图(ListDG.cpp)

3. Java源码
3.1 邻接矩阵实现的无向图(MatrixUDG.java)
3.2 邻接表实现的无向图(ListUDG.java)
3.3 邻接矩阵实现的有向图(MatrixDG.java)
3.4 邻接表实现的有向图(ListDG.java)

 文章来源地址https://www.toymoban.com/news/detail-638860.html

到了这里,关于图的遍历之 深度优先搜索和广度优先搜索的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构与算法】图的搜索——广度优先遍历、最小生成树

    邻接链表: 用字典实现.有向图的邻接链表的总长度等于图的边个数;无向图的邻接链表的总长度等于图的边个数的2倍. 邻接矩阵:用于最短路径算法. 该数据结构维护一个不相交动态集的集合,每个集合有一个代表,不关心谁做代表。 支持三种操作: MAKE_SET(x) FIND_SET(x) UNION(x,y

    2024年02月19日
    浏览(50)
  • 【数据结构与算法】图的基本概念 | 邻接矩阵和邻接表 | 广度优先遍历和深度优先遍历

    🌠 作者:@ 阿亮joy. 🎆 专栏:《数据结构与算法要啸着学》 🎇 座右铭:每个优秀的人都有一段沉默的时光,那段时光是付出了很多努力却得不到结果的日子,我们把它叫做扎根 图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E) ,其中: 顶点集合V = {x|x属于某

    2024年02月04日
    浏览(73)
  • 【数据结构与算法】图遍历算法 ( 深度优先搜索 DFS | 深度优先搜索和广度优先搜索 | 深度优先搜索基本思想 | 深度优先搜索算法步骤 | 深度优先搜索理论示例 )

    图 的 遍历 就是 对 图 中的 结点 进行遍历 , 遍历 结点 有如下两种策略 : 深度优先搜索 DFS 广度优先搜索 BFS \\\" 深度优先搜索 \\\" 英文名称是 Depth First Search , 简称 DFS ; DFS 基本思想 : 访问第一个邻接结点 : 从 起始点 出发 , 该 起始点 可能有 若干 邻接结点 , 访问 第一个 邻接结点

    2024年02月02日
    浏览(49)
  • 图的遍历之 深度优先搜索和广度优先搜索

    深度优先搜索的图文介绍 1. 深度优先搜索介绍 图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至

    2024年02月13日
    浏览(52)
  • 大话数据结构-图的深度优先遍历和广度优先遍历

      图的遍历分为深度优先遍历和广度优先遍历两种。   深度优先遍历(Depth First Search),也称为深度优先搜索,简称DFS,深度优先遍历,是指从某一个顶点开始,按照一定的规则,访问并记录下一个未访问顶点。对于非连通图,则是按连通分量,采用同一规则进行深度优

    2024年02月04日
    浏览(58)
  • (超详细)C++图的深度优先遍历、广度优先遍历(数据结构)

            根据下图,编写代码实现图的深度优先遍历和广度优先遍历。          按照英文字母顺序,以邻接表为存储结构,实现图的深度优先和广度优先遍历。遍历的顺序从顶点a开始。 以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。   (1)从顶点a,

    2024年02月08日
    浏览(61)
  • 【数据结构】图的遍历:广度优先(BFS),深度优先(DFS)

    目录 1、广度优先(BFS) 算法思想  广度优先生成树  知识树  代码实现  2、深度优先(DFS) 算法思想  深度优先生成树 知识树  代码实现           图的广度优先遍历(BFS)是一种遍历图的算法,其思想是从起始顶点开始遍历图,先访问起始顶点的所有直接邻居,然

    2024年02月04日
    浏览(66)
  • 算法数据结构——图的遍历之深度优先搜索算法(Depth First Search)

    深度优先搜索算法 (Depth First Search):英文缩写为 DFS。是一种用于搜索树或图的算法。所谓深度优先,就是说每次都尝试向更深的节点走。 深度优先搜索采用了回溯思想,该算法沿着树的深度遍历树的节点,会尽可能深的搜索树的分支。当节点 v 的所在边都己被探寻过,搜

    2024年02月09日
    浏览(50)
  • 图的遍历——深度优先搜索(DFS)与广度优先搜索(BFS)(附带C语言源码)

    个人主页:【😊个人主页】 系列专栏:【❤️数据结构与算法】 学习名言:天子重英豪,文章教儿曹。万般皆下品,惟有读书高——《神童诗劝学》 第一章 ❤️ 学前知识 第二章 ❤️ 单向链表 第三章 ❤️ 递归 … 在此之前我们学习过了图的一些基本概念,如同在二叉树

    2024年02月06日
    浏览(69)
  • 【数据结构】图的创建和深度(DFS)广度(BFS)优先遍历

    图是由顶点的有穷非空集合和顶点之间边的集合组成,通过表示为G(V,E),其中,G标示一个图, V是图G中 顶点的集合 , E是图G中 边的集合 。 图分为 无向图 和 有向图 无向图: 若顶点Vi到Vj之间的边没有方向,则称这条边为无向边(Edge),用序偶对(Vi,Vj)表示。 有向图: 若从

    2024年02月05日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包