实数信号的傅里叶级数研究(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了实数信号的傅里叶级数研究(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

实数信号的傅里叶级数是将实数信号分解为一系列正弦和余弦函数的和。通过研究实数信号的傅里叶级数,我们可以揭示信号的频域特性、谐波成分以及信号的周期性等信息。

以下是实数信号的傅里叶级数研究的步骤:

1. 确定信号的周期:实数信号的傅里叶级数要求信号是周期性的,因此第一步是确定信号的周期。如果信号已知周期,则直接使用已知的周期;如果信号的周期未知,可以通过观察信号的重复性或通过分析信号的特征来估计周期。

2. 计算基频和谐波频率:基频是指信号的周期的倒数,而谐波频率是基频的整数倍。通过计算基频和谐波频率,可以确定傅里叶级数中需要考虑的频率分量。

3. 计算信号的系数:使用傅里叶级数的公式,根据信号的周期和所选的频率分量,计算信号在每个频率分量上的系数。系数表示了每个频率分量对于信号的贡献程度。

4. 重构信号:将计算得到的正弦和余弦函数按照其对应的系数加权求和,可以重构出原始信号的近似,即使用傅里叶级数近似表示原始信号。

5. 分析频域特性和谐波成分:通过观察每个频率分量的系数,可以了解信号在频域上的特性。特别是谐波成分在系数中的存在可以揭示信号中的谐波结构和频率分布情况。

6. 评估和调整:根据计算得到的傅里叶级数近似信号和频域分析结果,评估傅里叶级数的逼近效果,并进行必要的调整和优化。

需要注意的是,实数信号的傅里叶级数研究需要信号是周期性的。对于非周期信号,可以考虑使用傅里叶变换进行频域分析。

总之,实数信号的傅里叶级数研究包括确定信号的周期、计算基频和谐波频率、计算信号的系数、重构信号、分析频域特性和谐波成分等步骤。通过这些步骤,我们可以深入了解信号的频域特性和谐波成分,从而更好地理解和处理实数信号。

📚2 运行结果

实数信号的傅里叶级数研究(Matlab代码实现),matlab,算法,开发语言

 实数信号的傅里叶级数研究(Matlab代码实现),matlab,算法,开发语言

部分代码:

function [ freq,amp,phase,dc ] = fourier_series_real( t,x )
% function [ freq,amp,phase,dc ] = fourier_series_real( t,x )
% Fourier series of real signals.
% Written by Yoash Levron, January 2013.
%
% This function computes the fourier series of a signal x(t).
% the amplitudes of the fourier series have the same dimension
% of the original signal, so this function is useful for immediate
% computation of the actual frequency components, without
% further processing.
%
% for example, x(t) = 2 + 3*cos(2*pi*50*t) will result in 
% dc value = 2
% frequencies = [50   100  150   200 ...]
% amplitudes   = [3     0      0        0     ...]
% phases         = [0     0      0        0     ...]
%
% x(t) is one cycle of an infinite cyclic signal. The function
% computes the fourier transform of that infinite signal.
% the period of the signal (T) is determined by the length
% of the input time vector, t.
% x(t) must be real (no imaginary values).
%
% The signal x(t) is represented as:
% x(t) = Adc + A1*cos(w*t + ph1) + A2*cos(2*w*t + ph2) + ...
% the function computes the amplitudes, Adc,A1,A2...
% and the phases ph1,ph2,...
%
% T = period of the signal = t(end) - t(1)
% w = basic frequency = 2*pi/T
%
% The function automatically interpolates the original signal
% to avoid aliasing. Likewise, the function automatically determines
% the number of fourier components, and truncates trailing zeros.
%
% inputs:
% t - [sec] time vector. Sample time may vary within the signal.
% x - signal vector. same length as t.
%
% outputs:
% freq - [Hz] frequencies of the fourier series, not including zero.
% amp - amplitudes vector. amp=[A1 A2 A3 ...], not including the DC component.
% phase - [rad/sec] . phases, not including the DC component.
% dc - the DC value (average of the signal).


%%%%%%%%%%% computation %%%%%%%%
rel_tol = 1e-4;  % relative tolerance, to determine trailing zero truncation

if (~isreal(x))
        clc;
        beep;
        disp('fourier_series_real Error:  x(t) must be real.');
        dc = NaN;  amp = NaN;  freq = NaN;  phase = NaN;
        return;
end

t = t-t(1);  % shifting time to zero.
T = t(end);  % period time.
N = 100;  % number of samples
if (mod(N,2) == 1)
    N = N + 1;
end
N = N/2;

ok = 0;
while (~ok)
    N = N*2;  % increase number of samples
    
    if (N > 10e6)
        clc;
        beep;
        disp('fourier_series_real Error: signal bandwidth seems too high.');
        disp('Try decreasing the sample time in the input time vector t,');
        disp('or increasing the relative tolerance rel_tol');
        dc = NaN;  amp = NaN;  freq = NaN;  phase = NaN;
        return;
    end
    dt = T/N;
    t1 = 0:dt:(T-dt);
    x1 = interp1(t,x,t1,'cubic',0);
    xk = (1/N)*fft(x1);
    
    dc = abs(xk(1));
    xkpos = xk(2:(N/2));
    xkneg = xk(end:-1:(N/2+2));
    
    freq = [1:length(xkpos)]/T;  % Hz
    amp = 2*abs(xkpos);
    phase = angle(xkpos);  % rad/sec
    
    %%% check if enough samples are used.
    %%% if not, try again, with more samples.
    Am = max(amp);
    ii = find((amp(end-10:end)/Am)>rel_tol);
    ok = isempty(ii);
end

% %%% truncate output vectors to remove trailing zeros
Am = max(amp);
ii = length(amp);
while (amp(ii) < Am*rel_tol)
    ii = ii - 1;
end
amp = amp(1:ii);
freq = freq(1:ii);
phase = phase(1:ii);

end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]赵乐源,刘传辉,刘锡国等.基于傅里叶级数的椭圆球面波信号时频分析[J].现代电子技术,2022,45(17):35-40.DOI:10.16652/j.issn.1004-373x.2022.17.007.

[2]苗永平,代坤,陈达等.傅里叶级数实验的优化设计与实践[J].实验室科学,2021,24(06):1-4+9.文章来源地址https://www.toymoban.com/news/detail-638961.html

🌈4 Matlab代码实现

到了这里,关于实数信号的傅里叶级数研究(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 9.利用matlab完成 泰勒级数展开 和 符号表达式傅里叶变换和反变换 (matlab程序)

    1. 简述        首先生成一个方波(或者其他组合波形),然后对这个信号做傅里叶变换,拆解到频域,可以看到这个信号是由哪些频率的信号叠加而来。 然后把频域信号,用傅里叶逆变换恢复到时域。这里的逆变换不是用matlab自带的ifft函数,而是依据原理,用很多正弦波

    2024年02月13日
    浏览(50)
  • 【快速傅里叶变换(fft)和逆快速傅里叶变换】生成雷达接收到的经过多普勒频移的脉冲雷达信号(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 本文的

    2024年02月10日
    浏览(51)
  • 图像的傅里叶变换

    先向大家道歉啊   作为基础知识这内容肯定有人写过   但作为屌丝没时间搜这个出处   也没什么商用价值 就是为了自己好看  收藏不好用 麻烦选别的   真的对不起就是为自己   烦请勿扰   看不惯你了 忍着 傅里叶基础 法国数学家吉恩·巴普提斯特·约瑟夫·傅里叶被

    2023年04月27日
    浏览(53)
  • 计算机视觉-图像的傅里叶变换

    😊😊😊 欢迎来到本博客 😊😊😊 本次博客内容将继续讲解关于OpenCV的相关知识 🎉 作者简介 : ⭐️⭐️⭐️ 目前计算机研究生在读。主要研究方向是人工智能和群智能算法方向。目前熟悉python网页爬虫、机器学习、计算机视觉(OpenCV)、群智能算法。然后正在学习深度

    2023年04月08日
    浏览(41)
  • 常数项级数、函数项级数、幂级数与傅里叶级数

    提示:本文的适用对象为已修过《微积分A1》的非数学系学生,文中题型方法为个人总结,为个人复习使用。部分理解虽然不太严谨,但对于解题的实用性较强。若有疏漏or错误,欢迎批评指正。 (1)判断无穷级数收敛性的方法 1.( 通过无穷级数的前n项和来判断 )若一个无

    2024年02月05日
    浏览(44)
  • 傅里叶级数和傅里叶变换之间的关系推理及应用

    傅里叶级数和傅立叶变换是傅里叶分析的两个主要工具,它们之间有密切的关系。 傅里叶级数是将一个周期函数分解为一系列正弦和余弦函数的和。它适用于周期性信号,可以将周期函数表示为一组振幅和相位不同的谐波分量的和。傅里叶级数展示了一个周期函数在不同频率

    2024年02月07日
    浏览(58)
  • 傅里叶级数和泰勒级数逼近已知函数的动态过程

    本文代码: Fourier级数和Taylor级数对原函数的逼近动画 级数是对已知函数的一种逼近,比较容易理解的是Taylor级数,通过多项式来逼近有限区间内的函数,其一般形式为 f ( x ) = ∑ n = 0 N a n x n f(x)=sum_{n=0}^N a_nx^n f ( x ) = n = 0 ∑ N ​ a n ​ x n 其中最著名的应该是自然指数,根据

    2024年02月12日
    浏览(36)
  • 如何理解图神经网络的傅里叶变换和图卷积

    图神经网络(GNN) 代表了一类强大的深度神经网络架构。在一个日益互联的世界里,因为信息的联通性,大部分的信息可以被建模为图。例如,化合物中的原子是节点,它们之间的键是边。 图神经网络的美妙之处在于它们能够在不牺牲重要细节的情况下直接对图结构数据进

    2024年02月09日
    浏览(44)
  • 傅里叶级数系数的完整详细算法

    傅里叶级数系数的完整详细算法 一、三角函数相关公式和定积分 在分析傅里叶级数之前,一定要先熟悉三角函数的相关公式,以及三角函数的积分。 1、两角和公式: sin( α + β ) = sin( α ) * cos( β ) + cos( α ) * sin( β ) sin( α - β ) = sin( α ) * cos( β ) - cos( α ) * sin( β ) cos( α + β

    2024年02月04日
    浏览(36)
  • Matlab信号处理3:fft(快速傅里叶变换)标准使用方式

    运行效果:

    2024年02月09日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包