3DMM(3D Morphable Model)原理和实现

这篇具有很好参考价值的文章主要介绍了3DMM(3D Morphable Model)原理和实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

实现:

 

- 首先,你需要准备一个包含二维人脸图像和对应的三维人脸模型的数据集。你可以使用CASIA WebFace数据集¹²,并利用多图像3DMM重建方法¹来生成每个个体的三维人脸模型。
- 然后,你需要定义一个深度卷积神经网络,比如ResNet101¹²,并修改它的最后一层全连接层,使输出为198维的3DMM特征向量¹²,包括99维的形状系数和99维的纹理系数¹³。
- 接着,你需要定义一个损失函数,用于衡量网络输出的3DMM参数和真实标注的3DMM参数之间的差异。你可以使用非对称欧几里得损失¹²,来平衡过度估计和不足估计的误差,并保留更多的细节特征²。
- 最后,你需要使用随机梯度下降优化器¹²来训练网络,调整学习率和其他超参数,直到验证集上的损失停止下降。

 如果你有一个二维人脸图像对应的3D扫描mesh,你可以用以下步骤来计算出Ground truth参数

根据我的搜索结果¹²,如果你有一个二维人脸图像对应的3D扫描mesh,你可以用以下步骤来计算出Ground truth参数:

- 首先,你需要将3D扫描mesh和3DMM模型的点进行对齐,也就是找到每个点在两个模型中的对应关系。这可以通过一些点云匹配的算法来实现,比如ICP或者RANSAC等。
- 然后,你需要将3D扫描mesh的形状向量和纹理向量提取出来,也就是将每个点的坐标和颜色值组成一个长向量。这可以通过一些网格处理的工具来实现,比如face3d³等。
- 最后,你需要将3D扫描mesh的形状向量和纹理向量投影到3DMM模型的基向量空间中,也就是求解出最优的形状系数和纹理系数。

 如果你的3D扫描mesh和3DMM模型的点是完全对齐的,那么投影后得到的形状系数和纹理系数就是Ground truth参数。但是如果你的3D扫描mesh和3DMM模型的点有一些误差或者噪声,那么投影后得到的形状系数和纹理系数可能会有一些偏差或者不稳定。

---------------------------------------------------------------------------------------------------------------------------

3DMM的基本原理是将人脸表示为参数化的模型,包括形状参数和纹理参数。形状参数描述了人脸的几何结构,如位置、大小和形状,而纹理参数描述了人脸的外观特征,如皮肤颜色和纹理。通过调整这些参数的值,可以生成不同形状和纹理的人脸模型。

首先,3DMM使用大量的训练数据来建立一个平均的人脸形状模型。该模型包含了人脸的平均形状和形状变化的主要模式。

形状参数的估计:

(一个平均的人脸形状转换为符合特定个体的形状)

  1. 特征点检测:从给定的脸部照片中,使用人脸关键点检测算法来提取关键点的位置信息,例如眼睛、嘴巴、鼻子等。

  2. 关键点对齐:需要对给定的脸部照片进行关键点对齐,以使其与平均模型对应的关键点位置一致。这可以通过一些对齐算法实现,例如Procrustes分析或人脸关键点检测算法。关键点对齐是将给定照片的几何结构与平均模型对齐的关键步骤。

  3. 通过比较提取的关键点位置与平均人脸模型的对应关键点位置,可以估计出适应给定图像的形状参数。这些形状参数描述了人脸的几何结构,如位置、大小和形状。(这通常使用优化算法,如最小化形状差异的最小二乘法。)

人脸图像对齐到平均模型的纹理空间:

人脸图像对齐到平均模型的纹理空间是指将人脸图像中的每个像素点映射到一个预定义的平均模型的纹理坐标系上,使得不同人脸图像之间有一个统一的纹理表示。这样可以方便地进行纹理参数估计和纹理重建。人脸图像对齐到平均模型的纹理空间的实现方法有不同的方式,比如基于关键点的方法,基于3D模型的方法,或者基于深度神经网络的方法¹²³。基于关键点的方法通常需要先检测出人脸图像中的一些关键点,然后用仿射变换或者薄板样条变换将这些关键点对齐到平均模型的关键点上,从而得到一个对齐后的人脸图像¹。基于3D模型的方法通常需要先从人脸图像中估计出3D模型的参数,然后用3D模型来渲染出一个正面视角的人脸图像,从而得到一个对齐后的人脸图像²。基于深度神经网络的方法通常直接从人脸图像中回归出一个对齐后的人脸图像,无需检测关键点或者估计3D模型³。

纹理参数的估计: 

基于PCA的方法是指用主成分分析(PCA)来建立一个线性的纹理模型,它可以用一组基函数和一组系数来表示任意的纹理图像。这个方法的实现步骤如下:

- 首先,需要从一些3D人脸扫描数据中提取出纹理信息,并将它们对齐到平均模型的纹理空间,形成一个纹理数据集。
- 然后,需要对这个纹理数据集进行PCA,得到一组平均纹理,一组特征向量(即基函数),和一组特征值(即方差)。
- 接着,需要将给定的人脸图像对齐到平均模型的纹理空间,得到一个对齐后的纹理图像。
- 最后,需要用PCA基函数来拟合这个对齐后的纹理图像,得到一组纹理参数。这可以通过求解一个最小二乘问题来实现,即找到一组纹理参数,使得对齐后的纹理图像和平均纹理加上基函数乘以参数的差异最小。文章来源地址https://www.toymoban.com/news/detail-638996.html

到了这里,关于3DMM(3D Morphable Model)原理和实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 扩散模型diffusion model用于图像恢复任务详细原理 (去雨,去雾等皆可),附实现代码

    话不多说,先上代码: 扩散模型diffusion model用于图像恢复完整可运行代码,附详细实验操作流程 令外一篇简化超分扩散模型SR3来实现图像恢复的博客见: 超分扩散模型 SR3 可以做图像去雨、去雾等恢复任务吗? 1. 去噪扩散概率模型 扩散模型是一类生成模型, 和生成对抗网络

    2024年02月03日
    浏览(56)
  • Django实现热加载原理(从源码开始分析)

    autoreload 这里是通过 restart_with_reloader 这个方法来实现的,首先我们第一次在python manage.py runserver的时候, DJANGO_AUTORELOAD_ENV 这个环境变量的值是None,当我们在执行完 restart_with_reloader 的时候,这个环境会变成true。 创建了一个新的环境,然后使用子进程,并把新的环境变量进去

    2024年02月04日
    浏览(38)
  • 【Vue技巧】Vue2和Vue3组件上使用v-model的实现原理

    ChatGPT4.0国内站点,支持GPT4 Vision 视觉模型:海鲸AI 在Vue中, v-model 是一个语法糖,用于在输入框、选择框等表单元素上创建双向数据绑定。当你在自定义组件中实现 v-model 功能时,你需要理解它背后的原理: v-model 实际上是一个属性和一个事件的简写。 在 Vue 2.x 中, v-mode

    2024年01月15日
    浏览(62)
  • 【四】3D Object Model之创建Creation——clear_object_model_3d()/copy_object_model_3d()算子

    😊😊😊 欢迎来到本博客 😊😊😊 🌟🌟🌟 Halcon算子太多,学习查找都没有系统的学习查找路径,本专栏主要分享Halcon各类算子含义及用法,有时间会更新具体案例。 😊😊😊 具体食用方式:可以点击本专栏【Halcon算子快速查找】–搜索你要查询的算子名称;或者点击

    2024年02月11日
    浏览(41)
  • 【四】3D Object Model之测量Features——area_object_model_3d()/distance_object_model_3d()算子

    😊😊😊 欢迎来到本博客 😊😊😊 🌟🌟🌟 Halcon算子太多,学习查找都没有系统的学习查找路径,本专栏主要分享Halcon各类算子含义及用法,有时间会更新具体案例。 😊😊😊 具体食用方式:可以点击本专栏【Halcon算子快速查找】–搜索你要查询的算子名称;或者点击

    2024年02月20日
    浏览(39)
  • 【四】3D Object Model之创建Creation——write_object_model_3d()算子

    😊😊😊 欢迎来到本博客 😊😊😊 🌟🌟🌟 Halcon算子太多,学习查找都没有系统的学习查找路径,本专栏主要分享Halcon各类算子含义及用法,有时间会更新具体案例。 😊😊😊 具体食用方式:可以点击本专栏【Halcon算子快速查找】–搜索你要查询的算子名称;或者点击

    2024年02月05日
    浏览(46)
  • 【四】3D Object Model之创建Creation——read_object_model_3d()算子

    😊😊😊 欢迎来到本博客 😊😊😊 🌟🌟🌟 Halcon算子太多,学习查找都没有系统的学习查找路径,本专栏主要分享Halcon各类算子含义及用法,有时间会更新具体案例。 😊😊😊 具体食用方式:可以点击本专栏【Halcon算子快速查找】–搜索你要查询的算子名称;或者点击

    2024年02月01日
    浏览(38)
  • Vue 3D Model 3D模型解析展示

    安装 | Vue 3D Model   npm 安装: yarn 安装: pnpm 安装:   FBX格式: GLTF 格式:  JSON格式: OBJ 格式:  PLY 格式:  STL格式: DAE格式:

    2024年02月06日
    浏览(49)
  • 单张图像3D重建:原理与PyTorch实现

    近年来,深度学习(DL)在解决图像分类、目标检测、语义分割等 2D 图像任务方面表现出了出色的能力。DL 也不例外,在将其应用于 3D 图形问题方面也取得了巨大进展。 在这篇文章中,我们将探讨最近将深度学习扩展到单图像 3D 重建任务的尝试,这是 3D 计算机图形领域最重

    2024年02月04日
    浏览(39)
  • vue-3d-model设置

    3d渲染逐渐进入到产品中,最近用到了一款vue的3d渲染组件——vue-3d-model。 根据官方文档引入成功之后,发现我的3d模型一面是亮的,另一面是黑的。由于没有设置灯光,导致模型渲染出来比较暗。下面看具体操作 vue模板:(这里以obj模型为例,主要是那个lights属性) js:(注意这里

    2024年02月10日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包