【深度学习注意力机制系列】—— CBAM注意力机制(附pytorch实现)

这篇具有很好参考价值的文章主要介绍了【深度学习注意力机制系列】—— CBAM注意力机制(附pytorch实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

CBAM(Convolutional Block Attention Module)是一种用于增强卷积神经网络(CNN)性能的注意力机制模块。它由Sanghyun Woo等人在2018年的论文[1807.06521] CBAM: Convolutional Block Attention Module (arxiv.org)中提出。CBAM的主要目标是通过在CNN中引入通道注意力和空间注意力来提高模型的感知能力,从而在不增加网络复杂性的情况下改善性能。

1、概述

CBAM旨在克服传统卷积神经网络在处理不同尺度、形状和方向信息时的局限性。为此,CBAM引入了两种注意力机制:通道注意力和空间注意力。通道注意力有助于增强不同通道的特征表示,而空间注意力有助于提取空间中不同位置的关键信息。

2、模型结构

CBAM由两个关键部分组成:通道注意力模块(C-channel)空间注意力模块(S-channel)。这两个模块可以分别嵌入到CNN中的不同层,以增强特征表示。

2.1 通道注意力模块

【深度学习注意力机制系列】—— CBAM注意力机制(附pytorch实现),深度学习,# PyTorch,深度学习,pytorch,人工智能,计算机视觉,机器学习,python

通道注意力模块的目标是增强每个通道的特征表达。以下是实现通道注意力模块的步骤:

  1. 全局最大池化和全局平均池化: 对于输入特征图,首先对每个通道执行全局最大池化和全局平均池化操作,计算每个通道上的最大特征值和平均特征值。这会生成两个包含通道数的向量,分别表示每个通道的全局最大特征和平均特征。

  2. 全连接层: 将全局最大池化和平均池化后的特征向量输入到一个共享全连接层中。这个全连接层用于学习每个通道的注意力权重。通过学习,网络可以自适应地决定哪些通道对于当前任务更加重要。将全局最大特征向量和平均特征向相交,得到最终注意力权重向量。

  3. Sigmoid激活: 为了确保注意力权重位于0到1之间,应用Sigmoid激活函数来产生通道注意力权重。这些权重将应用于原始特征图的每个通道。

  4. 注意力加权: 使用得到的注意力权重,将它们与原始特征图的每个通道相乘,得到注意力加权后的通道特征图。这将强调对当前任务有帮助的通道,并抑制无关的通道。

代码实现

class ChannelAttention(nn.Module):
    """
    CBAM混合注意力机制的通道注意力
    """

    def __init__(self, in_channels, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.fc = nn.Sequential(
            # 全连接层
            # nn.Linear(in_planes, in_planes // ratio, bias=False),
            # nn.ReLU(),
            # nn.Linear(in_planes // ratio, in_planes, bias=False)

            # 利用1x1卷积代替全连接,避免输入必须尺度固定的问题,并减小计算量
            nn.Conv2d(in_channels, in_channels // ratio, 1, bias=False),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels // ratio, in_channels, 1, bias=False)
        )

        self.sigmoid = nn.Sigmoid()

        def forward(self, x):
            avg_out = self.fc(self.avg_pool(x))
            max_out = self.fc(self.max_pool(x))
            out = avg_out + max_out
            out = self.sigmoid(out)
            return out * x

2.2 空间注意力模块

【深度学习注意力机制系列】—— CBAM注意力机制(附pytorch实现),深度学习,# PyTorch,深度学习,pytorch,人工智能,计算机视觉,机器学习,python

空间注意力模块的目标是强调图像中不同位置的重要性。以下是实现空间注意力模块的步骤:

  1. 最大池化和平均池化: 对于输入特征图,分别沿通道维度执行最大池化和平均池化操作,生成不同上下文尺度的特征。
  2. 连接和卷积: 将最大池化和平均池化后的特征沿着通道维度进行连接(拼接),得到一个具有不同尺度上下文信息的特征图。然后,通过卷积层处理这个特征图,以生成空间注意力权重。
  3. Sigmoid激活: 类似于通道注意力模块,对生成的空间注意力权重应用Sigmoid激活函数,将权重限制在0到1之间。
  4. 注意力加权: 将得到的空间注意力权重应用于原始特征图,对每个空间位置的特征进行加权。这样可以突出重要的图像区域,并减少不重要的区域的影响。

代码实现

class SpatialAttention(nn.Module):
    """
    CBAM混合注意力机制的空间注意力
    """

    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()

        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        out = torch.cat([avg_out, max_out], dim=1)
        out = self.sigmoid(self.conv1(out))
        return out * x

2.3 混合注意力模块

【深度学习注意力机制系列】—— CBAM注意力机制(附pytorch实现),深度学习,# PyTorch,深度学习,pytorch,人工智能,计算机视觉,机器学习,python

CBAM就是将通道注意力模块和空间注意力模块的输出特征逐元素相乘,得到最终的注意力增强特征。这个增强的特征将用作后续网络层的输入,以在保留关键信息的同时,抑制噪声和无关信息。原文实验证明先进行通道维度的整合,再进行空间维度的整合,模型效果更好(有效玄学炼丹的感觉)。

代码实现

class CBAM(nn.Module):
    """
    CBAM混合注意力机制
    """

    def __init__(self, in_channels, ratio=16, kernel_size=3):
        super(CBAM, self).__init__()
        self.channelattention = ChannelAttention(in_channels, ratio=ratio)
        self.spatialattention = SpatialAttention(kernel_size=kernel_size)

    def forward(self, x):
        x = self.channelattention(x)
        x = self.spatialattention(x)
        return x

总结

总之,CBAM模块通过自适应地学习通道和空间注意力权重,以提高卷积神经网络的特征表达能力。通过将通道注意力和空间注意力结合起来,CBAM模块能够在不同维度上捕获特征之间的相关性,从而提升图像识别任务的性能。文章来源地址https://www.toymoban.com/news/detail-639063.html

到了这里,关于【深度学习注意力机制系列】—— CBAM注意力机制(附pytorch实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Pytorch图像处理注意力机制SENet CBAM ECA模块解读

    目录 1. 注意力机制 1.1 SENet(Squeeze-and-Excitation Network) 1.1.1 SENet原理  1.1.2  SENet代码示例 1.2 CBAM(Convolutional Block Attention Module) 1.2.1 CBAM原理  1.2.2 CBAM代码示例 1.3 ECA(Efficient Channel Attention) 1.3.1 ECA原理  1.3.2 ECA代码示例   注意力机制 最初是为了解决自然语言处理(NLP)任

    2024年02月15日
    浏览(45)
  • SE、CBAM、ECA注意力机制(网络结构详解+详细注释代码+核心思想讲解+注意力机制优化神经网络方法)——pytorch实现

           这期博客我们来学习一下神秘已久的注意力机制,刚开始接触注意力机制的时候,感觉很有意思,事实上学会之后会发现比想象中的要简单,复杂的注意力机制后续会讲解,这期博客先讲解最常见的三种SE、CBAM、ECA注意力机制。        注意力机制更详细的可以被称

    2024年02月07日
    浏览(46)
  • 点云深度学习系列博客(五): 注意力机制原理概述

    目录 1. 注意力机制由来 2. Nadaraya-Watson核回归 3. 多头注意力与自注意力 4. Transformer模型 Reference 随着Transformer模型在NLP,CV甚至CG领域的流行,注意力机制(Attention Mechanism)被越来越多的学者所注意,将其引入各种深度学习任务中,以提升性能。清华大学胡世民教授团队近期发

    2024年02月10日
    浏览(40)
  • 注意力机制(SE, ECA, CBAM, SKNet, scSE, Non-Local, GCNet, ASFF) Pytorch代码

    2023.3.2新增SKNet代码 2023.3.10 新增 scSE代码 2023.3.11 新增 Non-Local Net 非局部神经网络 2023.3.13新增GCNet 2023.6.7新增ASFF SE注意力机制(Squeeze-and-Excitation Networks) :是一种 通道类型 的注意力机制,就是在通道维度上增加注意力机制,主要内容是是 squeeze 和 excitation . 就是使用另外一个

    2024年02月08日
    浏览(44)
  • Yolov5 中添加注意力机制 CBAM

    CBAM(Convolutional Block Attention Module)是一种注意力机制,它通过关注输入数据中的重要特征来增强卷积神经网络(CNN)的性能。CBAM的原理可以分为两个部分:空间注意力模块和通道注意力模块。 空间注意力模块:该模块关注输入特征图的每个空间位置的重要性。它首先对特征

    2024年02月10日
    浏览(38)
  • 图像中的注意力机制详解(SEBlock | ECABlock | CBAM)

    注意力机制目前主要有 通道注意力机制 和 空间注意力机制 两种 我们知道,输入一张图片,神经网络会提取图像特征,每一层都有不同大小的特征图。如图1所示,展示了 VGG网络在提取图像特征时特征图的大小变化。 图1 VGG网络特征结构图 其中,特征图常见的矩阵形状为

    2024年01月19日
    浏览(36)
  • 改进YOLOv8:添加CBAM注意力机制(涨点明显)

    计算机视觉中的注意力机制是一种聚焦于局部信息的机制,其基本思想是让系统学会忽略无关信息而关注重点信息。这种机制在图像识别、物体检测和人脸识别等任务中都发挥了重要作用。 注意力机制的实现方法有多种,其中包括 空间注意力 模型、 通道注意力 模型、 空间

    2024年01月15日
    浏览(59)
  • 【深度学习】注意力机制

    注意力机制(Attention Mechanism)是一种在计算机科学和机器学习中常用的技术,可以使模型在处理序列数据时更加准确和有效。在传统的神经网络中,每个神经元的输出只依赖于前一层的所有神经元的输出,而在注意力机制中,每个神经元的输出不仅仅取决于前一层的所有神经

    2024年02月02日
    浏览(37)
  • 深度学习——常见注意力机制

    SENet属于通道注意力机制。2017年提出,是imageNet最后的冠军 SENet采用的方法是对于特征层赋予权值。 重点在于如何赋权 1.将输入信息的所有通道平均池化。 2.平均池化后进行两次全连接,第一次全连接链接的神经元较少,第二次全连接神经元数和通道数一致 3.将Sigmoid的值固定

    2024年02月14日
    浏览(29)
  • 注意力机制SE、CBAM、ECA、CA的优缺点

    注意力机制是一种 机器学习技术 ,通常用于处理序列数据(如文本或音频)或图像数据中的信息筛选和集成。 注意力机制模块可以帮助神经网络更好地处理序列数据和图像数据,从而 提高模型的性能和精度 。 优点: 可以通过学习 自适应的通道权重 ,使得模型更加关注有

    2024年02月03日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包