时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比
效果一览
基本介绍
时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比。
1.MATLAB实现EEMD-LSTM、LSTM时间序列预测对比;
2.时间序列预测 就是先eemd把原输入全分解变成很多维作为输入 再输入LSTM预测 ;
3.运行环境Matlab2018b及以上,输出RMSE、MAPE、MAE等多指标对比,
先运行main1_eemd_test,进行eemd分解;再运行main2_lstm、main3_eemd_lstm;再运行main4_compare,两个模型对比。
模型搭建
EEMD-LSTM和LSTM集合是两种用于时间序列预测的方法,它们结合了经验模态分解 (Empirical Mode Decomposition, EMD) 和长短期记忆神经网络 (Long Short-Term Memory, LSTM)。这两种方法都具有一定的优势和适用场景,下面对它们进行对比。
EEMD-LSTM:
EEMD是一种数据分解方法,通过将时间序列分解成多个固有模态函数 (Intrinsic Mode Functions, IMF) 和一个剩余项,将非线性和非平稳的时间序列转化为多个平稳的子序列。
EEMD能够将时间序列的相关信息提取到不同的IMF中,每个IMF代表了时间序列中的不同频率成分。
LSTM是一种适用于序列数据的循环神经网络,能够捕捉长期依赖关系,适用于处理时间序列数据。
EEMD-LSTM的基本思路是将原始时间序列通过EEMD进行分解,然后将每个IMF作为LSTM的输入,利用LSTM模型对每个IMF进行预测,最后将预测结果合并得到最终的预测结果。通过构建多个独立的LSTM模型,每个模型都有不同的初始化条件和参数设置。每个LSTM模型都会对时间序列进行训练和预测,最后将它们的预测结果进行综合,例如通过平均或加权平均的方式得到最终的预测结果。优势在于通过建立多个模型,可以利用不同的初始化条件和参数组合,增加了模型的多样性,提高了整体的预测准确性。
对比:EEMD-LSTM利用EEMD将时间序列分解成不同频率的子序列,然后利用LSTM对每个子序列进行预测,最后将预测结果合并。这种方法能够更好地处理非线性和非平稳的时间序列,能够提取出不同频率成分的信息。然而,EEMD的分解过程可能会引入一些噪声,并且需要额外的计算步骤。
LSTM集合通过构建多个LSTM模型,利用不同的初始化条件和参数组合,增加了模型的多样性,提高了预测准确性。这种方法相对简单,不需要进行数据分解,适用于一般的时间序列预测任务。文章来源:https://www.toymoban.com/news/detail-639311.html
程序设计
- 完整程序和数据获取方式1:私信博主回复MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比,同等价值程序兑换;
- 完整程序和数据下载方式2(资源处直接下载):MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比;
- 完整程序和数据下载方式3(订阅《LSTM长短期记忆神经网络》专栏,同时可阅读《LSTM长短期记忆神经网络》专栏内容,数据订阅后私信我获取):MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比,专栏外只能获取该程序。
%% 创建混合LSTM网络架构
% 输入特征维度
numFeatures = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
% 创建"LSTM"模型
layers = [...
% 输入特征
sequenceInputLayer([numFeatures 1 1],'Name','input')
sequenceFoldingLayer('Name','fold')
% LSTM特征学习
lstmLayer(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
% LSTM输出
lstmLayer(optVars.NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
dropoutLayer(0.25,'Name','drop3')
% 全连接层
fullyConnectedLayer(numResponses,'Name','fc')
regressionLayer('Name','output') ];
layers = layerGraph(layers);
layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%% LSTM训练选项
% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;
options = trainingOptions( 'adam', ...
'MaxEpochs',500, ...
'GradientThreshold',1, ...
'InitialLearnRate',optVars.InitialLearnRate, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',400, ...
'LearnRateDropFactor',0.2, ...
'L2Regularization',optVars.L2Regularization,...
'Verbose',false, ...
'Plots','none');
%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229文章来源地址https://www.toymoban.com/news/detail-639311.html
到了这里,关于时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!