基于熵权法对Topsis模型的修正

这篇具有很好参考价值的文章主要介绍了基于熵权法对Topsis模型的修正。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

由于层次分析法的最大缺点为:主观性太强,影响判断,对结果有很大影响,所以提出了熵权法修正。

变异程度=方差/标准差。基于熵权法对Topsis模型的修正,数学建模,算法,Matlab,数学建模,Topsis,熵权法

如何度量信息量的大小:

把不可能的事情变成可能,这里面就有很多信息量。基于熵权法对Topsis模型的修正,数学建模,算法,Matlab,数学建模,Topsis,熵权法

概率越大,信息量越少基于熵权法对Topsis模型的修正,数学建模,算法,Matlab,数学建模,Topsis,熵权法

信息熵的定义:

所有概率相等的时候,信息熵最大:H(x)=ln (n)

其中n指时间可能发生的种数基于熵权法对Topsis模型的修正,数学建模,算法,Matlab,数学建模,Topsis,熵权法

熵越大信息量越大还是越小?

越小。基于熵权法对Topsis模型的修正,数学建模,算法,Matlab,数学建模,Topsis,熵权法

熵权法的计算步骤(原理版):

1.判断非负数,如果存在负数需要进行标准化。基于熵权法对Topsis模型的修正,数学建模,算法,Matlab,数学建模,Topsis,熵权法

2.计算概率:

公式意思:每个元素/所在列的和基于熵权法对Topsis模型的修正,数学建模,算法,Matlab,数学建模,Topsis,熵权法

3.计算信息熵(ej),信息效用值,熵权。基于熵权法对Topsis模型的修正,数学建模,算法,Matlab,数学建模,Topsis,熵权法

熵权法背后的原理:基于熵权法对Topsis模型的修正,数学建模,算法,Matlab,数学建模,Topsis,熵权法

MATLAB熵权法的操作:

代码操作的例子时博主之前一篇Topsis法(数学建模——TOPSIS法_Wei&Yan的博客-CSDN博客)最后河流水质的评价,在最后加上了熵权法进行了优化。

参考代码:

主函数:

%%  第一步:把数据复制到工作区,并将这个矩阵命名为X
% (1)在工作区右键,点击新建(Ctrl+N),输入变量名称为X
% (2)在Excel中复制数据,再回到Matlab中右键,点击粘贴Excel数据(Ctrl+Shift+V)
% (3)关掉这个窗口,点击X变量,右键另存为,保存为mat文件(下次就不用复制粘贴了,只需使用load命令即可加载数据)
% (4)注意,代码和数据要放在同一个目录下哦。
clear;clc
load data_water_quality.mat

%%  第二步:判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标']) 
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0:  ']);

if Judge == 1
    Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
    disp('请输入需要处理的这些列的指标类型(1:极小型, 2:中间型, 3:区间型) ')
    Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]:  '); %[2,1,3]
    % 注意,Position和Type是两个同维度的行向量
    for i = 1 : size(Position,2)  %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
        X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
    % Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
    % 第一个参数是要正向化处理的那一列向量 X(:,Position(i))   回顾上一讲的知识,X(:,n)表示取第n列的全部元素
    % 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
    % 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
    % 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
    end
    disp('正向化后的矩阵 X =  ')
    disp(X)
end
%% 作业:在这里增加是否需要算加权
% 补充一个基础知识:m*n维的矩阵A 点乘 n维行向量B,等于这个A的每一行都点乘B
% (注意:2017以及之后版本的Matlab才支持,老版本Matlab会报错)
% % 假如原始数据为:
%   A=[1, 2, 3;
%        2, 4, 6] 
% % 权重矩阵为:
%   B=[ 0.2, 0.5 ,0.3 ] 
% % 加权后为:
%   C=A .* B
%     0.2000    1.0000    0.9000
%     0.4000    2.0000    1.8000
% 类似的,还有矩阵和向量的点除, 大家可以自己试试计算A ./ B
% 注意,矩阵和向量没有 .- 和 .+ 哦 ,大家可以试试,如果计算A.+B 和 A.-B会报什么错误。

%% 这里补充一个小插曲
% % 在上一讲层次分析法的代码中,我们可以优化以下的语句:
% % Sum_A = sum(A);
% % SUM_A = repmat(Sum_A,n,1);
% % Stand_A = A ./ SUM_A;
% % 事实上,我们把第三行换成:Stand_A = A ./ Sum_A; 也是可以的哦 
% % (再次强调,新版本的Matlab才能运行哦)

%% 第三步:对正向化后的矩阵进行标准化
Z = X ./ repmat(sum(X.*X) .^ 0.5, n, 1);
disp('标准化矩阵 Z = ')
disp(Z)


%% 让用户判断是否需要增加权重
disp("请输入是否需要增加权重向量,需要输入1,不需要输入0")
Judge = input('请输入是否需要增加权重: ');
if Judge == 1
    Judge = input('使用熵权法确定权重请输入1,否则输入0: ');
    if Judge == 1
        if sum(sum(Z<0)) >0   % 如果之前标准化后的Z矩阵中存在负数,则重新对X进行标准化
            disp('原来标准化得到的Z矩阵中存在负数,所以需要对X重新标准化')
            for i = 1:n
                for j = 1:m
                    Z(i,j) = [X(i,j) - min(X(:,j))] / [max(X(:,j)) - min(X(:,j))];
                end
            end
            disp('X重新进行标准化得到的标准化矩阵Z为:  ')
            disp(Z)
        end
        weight = Entropy_Method(Z);
        disp('熵权法确定的权重为:')
        disp(weight)
    else
        disp(['如果你有3个指标,你就需要输入3个权重,例如它们分别为0.25,0.25,0.5, 则你需要输入[0.25,0.25,0.5]']);
        weight = input(['你需要输入' num2str(m) '个权数。' '请以行向量的形式输入这' num2str(m) '个权重: ']);
        OK = 0;  % 用来判断用户的输入格式是否正确
        while OK == 0 
            if abs(sum(weight) -1)<0.000001 && size(weight,1) == 1 && size(weight,2) == m  % 注意,Matlab中浮点数的比较要小心
                OK =1;
            else
                weight = input('你输入的有误,请重新输入权重行向量: ');
            end
        end
    end
else
    weight = ones(1,m) ./ m ; %如果不需要加权重就默认权重都相同,即都为1/m
end


%% 第四步:计算与最大值的距离和最小值的距离,并算出得分
D_P = sum([(Z - repmat(max(Z),n,1)) .^ 2 ] .* repmat(weight,n,1) ,2) .^ 0.5;   % D+ 与最大值的距离向量
D_N = sum([(Z - repmat(min(Z),n,1)) .^ 2 ] .* repmat(weight,n,1) ,2) .^ 0.5;   % D- 与最小值的距离向量
S = D_N ./ (D_P+D_N);    % 未归一化的得分
disp('最后的得分为:')
stand_S = S / sum(S)
[sorted_S,index] = sort(stand_S ,'descend')

% A = magic(5)  % 幻方矩阵
% M = magic(n)返回由1到n^2的整数构成并且总行数和总列数相等的n×n矩阵。阶次n必须为大于或等于3的标量。
% sort(A)若A是向量不管是列还是行向量,默认都是对A进行升序排列。sort(A)是默认的升序,而sort(A,'descend')是降序排序。
% sort(A)若A是矩阵,默认对A的各列进行升序排列
% sort(A,dim)
% dim=1时等效sort(A)
% dim=2时表示对A中的各行元素升序排列
% A = [2,1,3,8]
% Matlab中给一维向量排序是使用sort函数:sort(A),排序是按升序进行的,其中A为待排序的向量;
% 若欲保留排列前的索引,则可用 [sA,index] = sort(A,'descend') ,排序后,sA是排序好的向量,index是向量sA中对A的索引。
% sA  =  8     3     2     1
% index =  4     3     1     2

 因为matlab中的log=ln,且log(0)=-∞所以写了个函数放着出现-∞

自定义函数 :mylog文章来源地址https://www.toymoban.com/news/detail-639380.html

% 重新定义一个mylog函数,当输入的p中元素为0时,返回0
function [lnp] =  mylog(p)
n = length(p);   % 向量的长度
lnp = zeros(n,1);   % 初始化最后的结果
    for i = 1:n   % 开始循环
        if p(i) == 0   % 如果第i个元素为0
            lnp(i) = 0;  % 那么返回的第i个结果也为0
        else
            lnp(i) = log(p(i));  
        end
    end
end

到了这里,关于基于熵权法对Topsis模型的修正的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • topsis算法模型和熵权法使用原理详解

    topsis模型原理: 1.topsis模型介绍 TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution) 可翻译为逼近理想解排序法,国内常简称为优劣解距离法 TOPSIS 法是一种常用的综合评价方法,其能充分利用原始数据的信息, 其结果能精确地反映各评价方案之间的差距。 2.适用范围

    2024年02月04日
    浏览(42)
  • 基于熵权法的topsis分析(包含matlab源码以及实例)

                 目录 一、算法简述          1.topsis分析法          2.熵权法          3.两种算法的结合 二、算法步骤          1.判断指标类型          2.数据正向化          3.正向化矩阵标准化          4.计算概率矩阵P          5.计算各个指标的信息熵

    2024年01月16日
    浏览(40)
  • 评价模型(一) 层次分析法(AHP),熵权法,TOPSIS分析 及其对应 PYTHON 实现代码和例题解释

    数学建模系列文章: 以下是个人在准备数模国赛时候的一些模型算法和代码整理,有空会不断更新内容: 评价模型(一)层次分析法(AHP),熵权法,TOPSIS分析 及其对应 PYTHON 实现代码和例题解释 评价模型(二)主成分分析、因子分析、二者对比及其对应 PYTHON 实现代码和例

    2024年02月08日
    浏览(61)
  • 数学建模-熵权法

    熵权法:根据数据本身建立评价体系。 什么时候用? 数据全面,缺少文献或主观依据的题目,文献很难帮助我们确定影响水质的哪一个因素最重要,很难告诉我们指标的重要程度如何衡量。追求公平公正。 缺点:难以将数据之外的因素考虑进去 对比(层次分析法、TOPSIS法)

    2024年02月09日
    浏览(47)
  • 数学建模:熵权法

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 构建原始矩阵 D a t a Data D a t a 形状为 m ∗ n m *n m ∗ n ,其中 m m m 为评价对象, n n n 为评价指标。 对 D a t a Data D a t a 矩阵的指标进行 正向化处理 ,得到矩阵 X X X . 计算每一个指标在每一个对象下的所占该指标的比重,然后

    2024年02月10日
    浏览(46)
  • 数学建模之熵权法(SPSSPRO与MATLAB)

    对于某项指标,可以用熵值来判断某个指标的离散程度,其 信息熵值越小 ,指标的离散程度越大(表明指标值得变异程度越大,提供的信息量越多),该指标对综合评价的影响(即 权重 )就 越大 ,如果某项指标的值全部相等,则该指标在综合评价中不起作用。因此,可 利用

    2024年02月02日
    浏览(41)
  • 数学建模之熵权法(EWM)matlab实例实现

    本文参考http://blog.sina.com.cn/s/blog_710e9b550101aqnv.html 熵权法是一种客观赋值的方法,即它通过数据所包含的信息量来确定权重,形象的说如果每个人考试都能考100分,那么这个指标对于这些人的评价是毫无意义的,因为没有任何区分度,熵权法就是通过区分度来确定对于特征的

    2023年04月08日
    浏览(43)
  • Python综合评价模型(八)熵权法

    熵权法是根据评价指标的变异程度(差异系数)来分配权重,评价指标变异程度越大,所赋权重就越大,并以此对评价对象进行综合评价的方法 第一步 导入第三方库和案例数据 第二步 标准化数据(min-max标准化) 使用min-max标准化方法标准化数据后,各评价指标的最大值为

    2024年02月15日
    浏览(48)
  • 熵权法原理及应用

    熵权法原理及应用 熵 :起源于物理学,表示物质微观热运动时的混乱程度,在信息论中是衡量系统无序程度度量值。 熵权法 :根据信息熵的定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其信息熵值越小,指标的 离散程度越大 , 该指标对综合评价的 影响

    2024年02月16日
    浏览(49)
  • 权重分析——熵权法

    权重分析是通过熵权法对问卷调查的指标的重要性进行权重输出,根据信息熵的定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其信息熵值越小,指标的离散程度越大, 该指标对综合评价的影响(即权重)就越大,如果某项指标的值全部相等,则该指标在综合

    2024年02月16日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包