opencv 基础54-利用形状场景算法比较轮廓-cv2.createShapeContextDistanceExtractor()

这篇具有很好参考价值的文章主要介绍了opencv 基础54-利用形状场景算法比较轮廓-cv2.createShapeContextDistanceExtractor()。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

注意:新版本的opencv 4 已经没有这个函数 cv2.createShapeContextDistanceExtractor()

形状场景算法是一种用于比较轮廓或形状的方法。这种算法通常用于计算两个形状之间的相似性或差异性,以及找到最佳的匹配方式。

下面是一种基本的比较轮廓的流程,使用了形状场景算法:

  1. 数据准备: 首先,你需要准备两个形状的轮廓数据。轮廓可以表示为一系列的点坐标,或者更高级的表示方法,比如参数化的曲线等。

  2. 特征提取: 对于每个形状,你可以使用形状描述符或特征提取算法,将轮廓数据转化为一组能够表征形状的数值特征。这些特征可以是形状的曲率、长度、角度等等。

  3. 相似性度量: 选择一个相似性度量方法来比较两个形状的特征。常见的方法包括欧氏距离、曼哈顿距离、余弦相似度等。这些度量方法将两个形状的特征转化为一个相似性分数,分数越高表示形状越相似。

  4. 匹配与优化: 如果你想要找到最佳的形状匹配,可以使用优化算法来调整一个形状以使其与另一个形状更加相似。这可能涉及到形状的缩放、旋转、平移等变换。

  5. 可视化与解释: 最后,你可以可视化两个形状,展示它们的相似性以及在匹配过程中发生的变化。这可以通过绘制形状、展示变换等方式来实现。

需要注意的是,形状场景算法的选择取决于你所处理的具体问题和数据。不同的算法可能在不同的场景下表现更佳。一些常用的形状比较算法包括基于轮廓匹配的方法(如Frechet距离、Hausdorff距离)、基于特征的方法(如傅里叶描述符、轮廓矢量化等)、基于统计的方法(如Procrustes分析)等。

最终,选择适合你问题需求的方法,并根据实际情况进行调整和优化,以得到准确的形状比较结果。

利用形状场景算法比较轮廓与Hu 矩的区别

形状场景算法和Hu矩都是用于比较轮廓或形状的方法,但它们基于不同的原理和特征表示。

下面是它们之间的区别:

1. 原理和特征表示:

  • 形状场景算法: 形状场景算法基于整个形状的轮廓信息,通常通过提取一系列特征点的坐标来表示轮廓,然后计算这些特征点之间的几何关系、曲率等信息。这些算法可以比较两个形状之间的形状变化、缩放、旋转等变换。

  • Hu矩: Hu矩是一组与形状相关的不变矩,用于描述对象的整体形状特征。它们通过对轮廓的几何矩进行变换和归一化得到。Hu矩是一种用于表示形状的紧凑形式,能够在一定程度上保持形状的平移、旋转和缩放不变性。

2. 不变性:

  • 形状场景算法: 形状场景算法通常对形状的几何变换比较敏感,因此可能需要进行额外的处理来考虑形状的平移、旋转和缩放等变换。

  • Hu矩: Hu矩被设计用于保持一定的形状不变性,它们对于平移、旋转和缩放都具有一定程度的不变性。这使得Hu矩在某些形状匹配和识别任务中非常有用。

3. 适用领域:

  • 形状场景算法: 形状场景算法适用于需要考虑形状变换以及局部特征的情况。例如,可以用于比较两个形状的整体结构和曲率变化。

  • Hu矩: Hu矩适用于需要保持形状不变性的场景,例如对象识别、图像检索等。它们能够在一定程度上解决形状的旋转、平移和缩放变化对比较造成的影响。

OpenCV 提供了使用“距离”作为形状比较的度量标准。这是因为形状之间的差异值和距离有相似之处,比如二者都只能是零或者正数,又比如当两个形状一模一样时距离值和差值都等于零。

OpenCV 提供了函数 cv2.createShapeContextDistanceExtractor(),用于计算形状场景距离。

其使用的“形状上下文算法”在计算距离时,在每个点上附加一个“形状上下文”描述符,让每个点都能够捕获剩余点相对于它的分布特征,从而提供全局鉴别特征。

函数 cv2.createShapeContextDistanceExtractor()的语法格式为:

retval = cv2.createShapeContextDistanceExtractor( [, nAngularBins[,
nRadialBins[, innerRadius[, outerRadius[, iterations[, comparer[,
transformer]]]]]]] )

式中的返回值为 retval,返回结果。
该结果可以通过函数 cv2.ShapeDistanceExtractor.computeDistance()计算两个不同形状之间的距离。此函数的语法格式为:

retval=cv2.ShapeDistanceExtractor.computeDistance(contour1, contour2)

式中,coutour1 和 coutour2 是不同的轮廓。

函数 cv2.createShapeContextDistanceExtractor()的参数都是可选参数:

  • nAngularBins:为形状匹配中使用的形状上下文描述符建立的角容器的数量。
  • nRadialBins:为形状匹配中使用的形状上下文描述符建立的径向容器的数量。
  • innerRadius:形状上下文描述符的内半径。
  • outerRadius:形状上下文描述符的外半径。
  • iterations:迭代次数。
  • comparer:直方图代价提取算子。该函数使用了直方图代价提取仿函数,可以直接采用
    直方图代价提取仿函数的算子作为参数。
  • transformer:形状变换参数。

示例:使用函数 cv2.createShapeContextDistanceExtractor()计算形状场景距离。

import cv2
#-----------原始图像 o1 的边缘--------------------
o1 = cv2.imread('cs.bmp')
cv2.imshow("original1",o1)
gray1 = cv2.cvtColor(o1,cv2.COLOR_BGR2GRAY)
ret, binary1 = cv2.threshold(gray1,127,255,cv2.THRESH_BINARY)
contours1, hierarchy = cv2.findContours(binary1,
 cv2.RETR_LIST,
 cv2.CHAIN_APPROX_SIMPLE)

cnt1 = contours1[0]
#-----------原始图像 o2 的边缘--------------------
o2 = cv2.imread('cs3.bmp')
cv2.imshow("original2",o2)
gray2 = cv2.cvtColor(o2,cv2.COLOR_BGR2GRAY)
ret, binary2 = cv2.threshold(gray2,127,255,cv2.THRESH_BINARY)
contours2, hierarchy = cv2.findContours(binary2,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)

cnt2 = contours2[0]
#-----------原始图像 o3 的边缘--------------------
o3 = cv2.imread('hand.bmp')
cv2.imshow("original3",o3)
gray3 = cv2.cvtColor(o3,cv2.COLOR_BGR2GRAY)
ret, binary3 = cv2.threshold(gray3,127,255,cv2.THRESH_BINARY)
contours3, hierarchy = cv2.findContours(binary3,
 cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnt3 = contours3[0]

#-----------构造距离提取算子--------------------
sd = cv2.createShapeContextDistanceExtractor()

#-----------计算距离--------------------
d1 = sd.matchShapes(cnt1,cnt1)
print("与自身的距离 d1=", d1)
d2 = sd.matchShapes(cnt1,cnt2)
print("与旋转缩放后的自身图像的距离 d2=", d2)
d3 = sd.matchShapes(cnt1,cnt3)
print("与不相似对象的距离 d3=", d3)

cv2.waitKey()
cv2.destroyAllWindows()





运行后报错:

opencv 基础54-利用形状场景算法比较轮廓-cv2.createShapeContextDistanceExtractor(),opencv,opencv,算法,人工智能文章来源地址https://www.toymoban.com/news/detail-639577.html

到了这里,关于opencv 基础54-利用形状场景算法比较轮廓-cv2.createShapeContextDistanceExtractor()的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCvSharp-轮廓形状匹配/模板查找1.0(附源码)

    目录 前言:  一、函数讲解: 图像阈值处理:Cv2.Threshold() 查找轮廓 Cv2.FindContours() 最小外接矩形 Cv2.BoundingRect(); 绘制轮廓 Cv2.DrawContours()  计算轮廓相似度 Cv2.MatchShapes() 二、代码(教学注释详细,仔细阅读) 三、代码过程总结: 前言: 轮廓匹配是一种计算机视觉技术

    2024年02月02日
    浏览(34)
  • OpenCV基础之边缘检测与轮廓描绘

    边缘检测:主要是通过一些手段检测数字图像中明暗变化剧烈(即梯度变化比较大)像素点,偏向于图像中像素点的变化。 轮廓检测:指在包含目标和背景的数字图像中,忽略背景和目标内部的纹理以及噪声干扰的影响,采用一定的技术和方法来实现目标轮廓提取的过程。主

    2024年02月06日
    浏览(31)
  • opencv基础53-图像轮廓06-判断像素点与轮廓的关系(轮廓内,轮廓上,轮廓外)cv2.pointPolygonTest()

    在 OpenCV 中,函数 cv2.pointPolygonTest()被用来计算点到多边形(轮廓)的最短距离(也 就是垂线距离),这个计算过程又称点和多边形的关系测试。该函数的语法格式为: retval = cv2.pointPolygonTest( contour, pt, measureDist ) 式中的返回值为 retval,与参数 measureDist 的值有关。 式中的参数

    2024年02月13日
    浏览(37)
  • Opencv算法记录:如何使用Opencv求解圆与轮廓、直线的交点

    GUN C编译器拓展语法学习笔记(一)GNU C特殊语法部分详解 GUN C编译器拓展语法学习笔记(二)属性声明 GUN C编译器拓展语法学习笔记(三)内联函数、内建函数与可变参数宏 数组存储与指针学习笔记(一)数据类型与存储、数据对齐、数据移植、typedef   最近涉及到Opencv用来求

    2024年02月11日
    浏览(48)
  • opencv基础55-获取轮廓的特征值及示例

    轮廓自身的一些属性特征及轮廓所包围对象的特征对于描述图像具有重要意义。本节介绍几个轮廓自身的属性特征及轮廓所包围对象的特征。 可以使用宽高比(AspectRation)来描述轮廓,例如矩形轮廓的宽高比为: 示例:编写程序计算矩形轮廓的宽高比。 运行结果: 同时,程

    2024年02月12日
    浏览(37)
  • 【Python】【OpenCV】凸轮廓和Douglas-Peucker算法

    针对遇到的各种复杂形状的主体,大多情况下,我们可以求得一个近似的多边形来简化视觉图像处理,因为多边形是由直线组成的,这样就可以准确的划分区域来便捷后续的操作。   cv2.arcLength() Method: 参数: curve :要计算周长的轮廓,可以是一个矩形、圆形、多边形等封闭

    2024年02月05日
    浏览(43)
  • opencv基础48-绘制图像轮廓并切割示例-cv2.drawContours()

    在 OpenCV 中,可以使用函数 cv2.drawContours()绘制图像轮廓。该函数的语法格式是: image=cv2.drawContours( image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]] ) 其中,函数的返回值为 image,表示目标图像,即绘制了边缘的原始图像。 该函数有如下参数: image:待

    2024年02月13日
    浏览(47)
  • opencv 基础50-图像轮廓学习03-Hu矩函数介绍及示例-cv2.HuMoments()

    Hu 矩(Hu Moments)是由计算机视觉领域的科学家Ming-Kuei Hu于1962年提出的一种图像特征描述方法。这些矩是用于描述图像形状和几何特征的不变特征,具有平移、旋转和尺度不变性,适用于图像识别、匹配和形状分析等任务。 Ming-Kuei Hu在其论文中提出了七个用于形状描述的独特

    2024年02月13日
    浏览(66)
  • 【Python】【OpenCV】绘制外接矩形、外接圆 以及 凸轮廓和Douglas-Peucker算法

     外接矩形、外接圆:   1、cv2.boundingRect() Method 和 cv2.minAreaRect() Merhod:前者只寻找和 x、y轴 平行的矩形,后者则可以出现旋转角度。 2、cv2.drawContours() Method:第二个参数接收的是轮廓信息,但是这个轮廓信息需要以 tuple or list or set类型(或者说是iterable)才可以传入。 请注

    2024年02月05日
    浏览(61)
  • opencv识别不同形状

    基本思路:将图片转化为灰度图后,过滤出边缘,并识别顶点,通过统计顶点的个数来判断形状 过滤出边缘 识别图片中形状的边缘 根据顶点数输出形状

    2024年02月15日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包