Hutool:一行代码搞定数据脱敏

这篇具有很好参考价值的文章主要介绍了Hutool:一行代码搞定数据脱敏。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 什么是数据脱敏

1.1 数据脱敏的定义

数据脱敏百度百科中是这样定义的:

数据脱敏,指对某些敏感信息通过脱敏规则进行数据的变形,实现敏感隐私数据的可靠保护。这样就可以在开发、测试和其它非生产环境以及外包环境中安全地使用脱敏后的真实数据集。在涉及客户安全数据或者一些商业性敏感数据的情况下,在不违反系统规则条件下,对真实数据进行改造并提供测试使用,如身份证号、手机号、卡号、客户号等个人信息都需要进行数据脱敏。是数据库安全技术之一。

总的来说,数据脱敏是指对某些敏感信息通过脱敏规则进行数据的变形,实现敏感隐私数据的可靠保护。

在数据脱敏过程中,通常会采用不同的算法和技术,以根据不同的需求和场景对数据进行处理。例如,对于身份证号码,可以使用掩码算法(masking)将前几位数字保留,其他位用“X”或"*"代替;对于姓名,可以使用伪造(pseudonymization)算法,将真实姓名替换成随机生成的假名。

1.2 常用脱敏规则

替换、重排、加密、截断、掩码

2. Hutool工具介绍

2.1 引入Maven配置

在项目的pom.xml的dependencies中加入以下内容,这里以5.8.16版本为例。

<dependency>
    <groupId>cn.hutool</groupId>
    <artifactId>hutool-all</artifactId>
    <version>5.8.16</version>
</dependency>


注意:Hutool 5.x支持JDK8+, 如果你的项目使用JDK7,请使用Hutool 4.x版本。本文使用的数据脱敏工具类只有在5.6+版本以上才提供。

2.2 Hutool包含的组件

一个Java基础工具类,对文件、流、加密解密、转码、正则、线程、XML等JDK方法进行封装,组成各种Util工具类,同时提供以下组件:

模块 介绍
hutool-aop JDK动态代理封装,提供非IOC下的切面支持
hutool-bloomFilter 布隆过滤,提供一些Hash算法的布隆过滤
hutool-cache 简单缓存实现
hutool-core 核心,包括Bean操作、日期、各种Util等
hutool-cron 定时任务模块,提供类Crontab表达式的定时任务
hutool-crypto 加密解密模块,提供对称、非对称和摘要算法封装
hutool-db JDBC封装后的数据操作,基于ActiveRecord思想
hutool-dfa 基于DFA模型的多关键字查找
hutool-extra 扩展模块,对第三方封装(模板引擎、邮件、Servlet、二维码、Emoji、FTP、分词等)
hutool-http 基于HttpUrlConnection的Http客户端封装
hutool-log 自动识别日志实现的日志门面
hutool-script 脚本执行封装,例如Javascript
hutool-setting 功能更强大的Setting配置文件和Properties封装
hutool-system 系统参数调用封装(JVM信息等)
hutool-json JSON实现
hutool-captcha 图片验证码实现
hutool-poi 针对POI中Excel和Word的封装
hutool-socket 基于Java的NIO和AIO的Socket封装
hutool-jwt JSON Web Token (JWT)封装实现

可以根据需求对每个模块单独引入,也可以通过引入hutool-all方式引入所有模块,本文所使用的数据脱敏工具就是在hutool.core模块。

2.3 Hutool支持的脱敏数据类型

现阶段最新版本的Hutool支持的脱敏数据类型如下,基本覆盖了常见的敏感信息。

  1. 用户id

  2. 中文姓名

  3. 身份证号

  4. 座机号

  5. 手机号

  6. 地址

  7. 电子邮件

  8. 密码

  9. 中国大陆车牌,包含普通车辆、新能源车辆

  10. 银行卡

3. Hutool数据脱敏实操

3.1 使用Hutool工具类一行代码实现脱敏

Hutool提供的脱敏方法如下图所示:

注意:Hutool 脱敏是通过*来代替敏感信息的,具体实现是在StrUtil.hide方法中,如果我们想要自定义隐藏符号,则可以把Hutool的源码拷出来,重新实现即可。

这里以手机号、银行卡号、身份证号、密码信息的脱敏为例,下面是对应的测试代码。

import cn.hutool.core.util.DesensitizedUtil;
import org.junit.Test;
import org.springframework.boot.test.context.SpringBootTest;

/**
 * 
 * @description: Hutool实现数据脱敏
 */
@SpringBootTest
public class HuToolDesensitizationTest {

    @Test
    public void testPhoneDesensitization(){
        String phone="13723231234";
        System.out.println(DesensitizedUtil.mobilePhone(phone)); //输出:137****1234
    }
    @Test
    public void testBankCardDesensitization(){
        String bankCard="6217000130008255666";
        System.out.println(DesensitizedUtil.bankCard(bankCard)); //输出:6217 **** **** *** 5666
    }

    @Test
    public void testIdCardNumDesensitization(){
        String idCardNum="411021199901102321";
        //只显示前4位和后2位
        System.out.println(DesensitizedUtil.idCardNum(idCardNum,4,2)); //输出:4110************21
    }
    @Test
    public void testPasswordDesensitization(){
        String password="www.jd.com_35711";
        System.out.println(DesensitizedUtil.password(password)); //输出:****************
    }
}




以上就是使用Hutool封装好的工具类实现数据脱敏。

3.2 配合JackSon通过注解方式实现脱敏

现在有了数据脱敏工具类,如果前端需要显示数据数据的地方比较多,我们不可能在每个地方都调用一个工具类,这样就显得代码太冗余了,那我们如何通过注解的方式优雅的完成数据脱敏呢?

如果项目是基于springboot的web项目,则可以利用springboot自带的jackson自定义序列化实现。它的实现原来其实就是在json进行序列化渲染给前端时,进行脱敏。

第一步:****脱敏策略的枚举。


/**
 * @author
 * @description:脱敏策略枚举
 */
public enum DesensitizationTypeEnum {
    //自定义
    MY_RULE,
    //用户id
    USER_ID,
    //中文名
    CHINESE_NAME,
    //身份证号
    ID_CARD,
    //座机号
    FIXED_PHONE,
    //手机号
    MOBILE_PHONE,
    //地址
    ADDRESS,
    //电子邮件
    EMAIL,
    //密码
    PASSWORD,
    //中国大陆车牌,包含普通车辆、新能源车辆
    CAR_LICENSE,
    //银行卡
    BANK_CARD
}


上面表示支持的脱敏类型。

第二步:****定义一个用于脱敏的 Desensitization 注解。

  • @Retention(RetentionPolicy.RUNTIME):运行时生效。
  • @Target(ElementType.FIELD):可用在字段上。
  • @JacksonAnnotationsInside:此注解可以点进去看一下是一个元注解,主要是用户打包其他注解一起使用。
  • @JsonSerialize:上面说到过,该注解的作用就是可自定义序列化,可以用在注解上,方法上,字段上,类上,运行时生效等等,根据提供的序列化类里面的重写方法实现自定义序列化。
/**
 * @author 
 */
@Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)
@JacksonAnnotationsInside
@JsonSerialize(using = DesensitizationSerialize.class)
public @interface Desensitization {
    /**
     * 脱敏数据类型,在MY_RULE的时候,startInclude和endExclude生效
     */
    DesensitizationTypeEnum type() default DesensitizationTypeEnum.MY_RULE;

    /**
     * 脱敏开始位置(包含)
     */
    int startInclude() default 0;

    /**
     * 脱敏结束位置(不包含)
     */
    int endExclude() default 0;
}


注:只有使用了自定义的脱敏枚举MY_RULE的时候,开始位置和结束位置才生效。

第三步:创建自定的序列化类

这一步是我们实现数据脱敏的关键。自定义序列化类继承 JsonSerializer,实现ContextualSerializer接口,并重写两个方法。


/**
 * @author 
 * @description: 自定义序列化类
 */
@AllArgsConstructor
@NoArgsConstructor
public class DesensitizationSerialize extends JsonSerializer<String> implements ContextualSerializer {
    private DesensitizationTypeEnum type;

    private Integer startInclude;

    private Integer endExclude;

    @Override
    public void serialize(String str, JsonGenerator jsonGenerator, SerializerProvider serializerProvider) throws IOException {
        switch (type) {
            // 自定义类型脱敏
            case MY_RULE:
                jsonGenerator.writeString(CharSequenceUtil.hide(str, startInclude, endExclude));
                break;
            // userId脱敏
            case USER_ID:
                jsonGenerator.writeString(String.valueOf(DesensitizedUtil.userId()));
                break;
            // 中文姓名脱敏
            case CHINESE_NAME:
                jsonGenerator.writeString(DesensitizedUtil.chineseName(String.valueOf(str)));
                break;
            // 身份证脱敏
            case ID_CARD:
                jsonGenerator.writeString(DesensitizedUtil.idCardNum(String.valueOf(str), 1, 2));
                break;
            // 固定电话脱敏
            case FIXED_PHONE:
                jsonGenerator.writeString(DesensitizedUtil.fixedPhone(String.valueOf(str)));
                break;
            // 手机号脱敏
            case MOBILE_PHONE:
                jsonGenerator.writeString(DesensitizedUtil.mobilePhone(String.valueOf(str)));
                break;
            // 地址脱敏
            case ADDRESS:
                jsonGenerator.writeString(DesensitizedUtil.address(String.valueOf(str), 8));
                break;
            // 邮箱脱敏
            case EMAIL:
                jsonGenerator.writeString(DesensitizedUtil.email(String.valueOf(str)));
                break;
            // 密码脱敏
            case PASSWORD:
                jsonGenerator.writeString(DesensitizedUtil.password(String.valueOf(str)));
                break;
            // 中国车牌脱敏
            case CAR_LICENSE:
                jsonGenerator.writeString(DesensitizedUtil.carLicense(String.valueOf(str)));
                break;
            // 银行卡脱敏
            case BANK_CARD:
                jsonGenerator.writeString(DesensitizedUtil.bankCard(String.valueOf(str)));
                break;
            default:
        }

    }

    @Override
    public JsonSerializer<?> createContextual(SerializerProvider serializerProvider, BeanProperty beanProperty) throws JsonMappingException {
        if (beanProperty != null) {
            // 判断数据类型是否为String类型
            if (Objects.equals(beanProperty.getType().getRawClass(), String.class)) {
                // 获取定义的注解
                Desensitization desensitization = beanProperty.getAnnotation(Desensitization.class);
                // 为null
                if (desensitization == null) {
                    desensitization = beanProperty.getContextAnnotation(Desensitization.class);
                }
                // 不为null
                if (desensitization != null) {
                    // 创建定义的序列化类的实例并且返回,入参为注解定义的type,开始位置,结束位置。
                    return new DesensitizationSerialize(desensitization.type(), desensitization.startInclude(),
                            desensitization.endExclude());
                }
            }

            return serializerProvider.findValueSerializer(beanProperty.getType(), beanProperty);
        }
        return serializerProvider.findNullValueSerializer(null);
    }
}


经过上述三步,已经完成了通过注解实现数据脱敏了,下面我们来测试一下。

首先定义一个要测试的pojo,对应的字段加入要脱敏的策略。

/**
 *
 * @description:
 */
@Data
@NoArgsConstructor
@AllArgsConstructor
public class TestPojo {

    private String userName;

    @Desensitization(type = DesensitizationTypeEnum.MOBILE_PHONE)
    private String phone;

    @Desensitization(type = DesensitizationTypeEnum.PASSWORD)
    private String password;

    @Desensitization(type = DesensitizationTypeEnum.MY_RULE, startInclude = 0, endExclude = 2)
    private String address;
}




接下来写一个测试的controller

@RestController
public class TestController {

    @RequestMapping("/test")
    public TestPojo testDesensitization(){
        TestPojo testPojo = new TestPojo();
        testPojo.setUserName("我是用户名");
        testPojo.setAddress("地球中国-北京市通州区京东总部2号楼");
        testPojo.setPhone("13782946666");
        testPojo.setPassword("sunyangwei123123123.");
        System.out.println(testPojo);
        return testPojo;
    }

}


可以看到我们成功实现了数据脱敏。

4. 其他常见的数据脱敏工具推荐

除了本文介绍的Hutool工具之外,还有一些其他的数据脱敏工具,常见脱敏方法或工具如下所示:

4.1 Apache ShardingSphere

Apache ShardingSphere下面存在一个数据脱敏模块,此模块集成的常用的数据脱敏的功能。其基本原理是对用户输入的SQL进行解析拦截,并依靠用户的脱敏配置进行SQL的改写,从而实现对原文字段的加密及加密字段的解密。最终实现对用户无感的加解密存储、查询。

具体实现方式可参考下面文章: https://jaskey.github.io/blog/2020/03/18/sharding-sphere-data-desensitization/

4.2 FastJSON

平时开发Web项目的时候,除了默认的Spring自带的序列化工具,FastJson也是一个很常用的Spring web Restful接口序列化的工具。

FastJSON实现数据脱敏的方式主要有两种:

  • 基于注解@JSONField实现:需要自定义一个用于脱敏的序列化的类,然后在需要脱敏的字段上通过@JSONField中的serializeUsing 指定为我们自定义的序列化类型即可。
  • 基于序列化过滤器:需要实现ValueFilter接口,重写process方法完成自定义脱敏,然后在JSON转换时使用自定义的转换策略。具体实现可参考这篇文章: https://juejin.cn/post/7067916686141161479

4.3 Mybatis-mate

mybatisplus也提供了数据脱敏模块,mybatis-mate,不过在使用之前需要配置授权码。

配置内容如下所示:

# Mybatis Mate 配置
mybatis-mate:
  cert:
    grant: jxftsdfggggx
    license: GKXP9r4MCJhGID/DTGigcBcLmZjb1YZGjE4GXaAoxbtGsPC20sxpEtiUr2F7Nb1ANTUekvF6Syo6DzraA4M4oacwoLVTglzfvaEfadfsd232485eLJK1QsskrSJmreMnEaNh9lsV7Lpbxy9JeGCeM0HPEbRvq8Y+8dUt5bQYLklsa3ZIBexir+4XykZY15uqn1pYIp4pEK0+aINTa57xjJNoWuBIqm7BdFIb4l1TAcPYMTsMXhF5hfMmKD2h391HxWTshJ6jbt4YqdKD167AgeoM+B+DE1jxlLjcpskY+kFs9piOS7RCcmKBBUOgX2BD/JxhR2gQ==


具体实现可参考baomidou提供的如下代码: https://gitee.com/baomidou/mybatis-mate-examples

5. 总结

本文主要介绍了数据脱敏的相关内容,首先介绍了数据脱敏的概念,在此基础上介绍了常用的数据脱敏规则;随后介绍了本文的重点Hutool工具及其使用方法,在此基础上进行了实操,分别演示了使用DesensitizedUtil工具类、配合Jackson通过注解的方式完成数据脱敏;最后,介绍了一些常见的数据脱敏方法,并附上了对应的教程链接供大家参考,本文内容如有不当之处,还请大家批评指正。

6. 参考内容

Hutool工具官网: https://hutool.cn/docs/#/?id=%f0%9f%93%9a%e7%ae%80%e4%bb%8b

聊聊如何自定义数据脱敏: https://juejin.cn/post/7046567603971719204

FastJSON实现数据脱敏: https://juejin.cn/post/7067916686141161479

作者:京东科技 孙扬威

来源:京东云开发者社区文章来源地址https://www.toymoban.com/news/detail-639661.html

到了这里,关于Hutool:一行代码搞定数据脱敏的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • postgresql数据脱敏技术介绍以及使用字符替换数据库脱敏示例代码

    在 PostgreSQL 数据库中实现数据脱敏(Data Masking)可以帮助保护敏感数据的隐私和安全。数据脱敏是通过修改或替换敏感数据的方法来隐藏或模糊数据的真实值,以防止未经授权的访问者获取敏感信息。 以下是一些常见的 PostgreSQL 数据库脱敏技术: 数据加密:使用加密算法对

    2024年02月16日
    浏览(48)
  • 一行代码就能完成的事情,为什么要写两行?

    前后端面试题库 (面试必备) 推荐:★★★★★ 地址:前端面试题库  web前端面试题库 VS java后端面试题库大全 三元运算符 用三元运算符代替简单的 if else 改用三元运算符,一行就能搞定 复杂的判断三元运算符就有点不简单易懂了 判断 当需要判断的情况不止一个时,第一个

    2023年04月16日
    浏览(39)
  • 一行代码也不写,拿Github Copliot + DallE3做一个小游戏是什么体验?

    我全程没写一句代码...       乡村爱情15看完了,晚上也没什么事,就寻思折腾点事做,儿子问我小时候最爱玩什么游戏,我毫不犹豫的说1945,正好这个事情给了我一个brain storming,那我自己写一个简单的1945可不可以?       说干就干,但是我也没写过游戏,于是我开启了

    2024年02月03日
    浏览(44)
  • 可视化大屏的终极解决方案居然这么简单,vue-autofit一行全搞定!

    可视化大屏的适配是一个老生常谈的话题了,现在其实不乏一些大佬开源的自适应插件、工具但是我为什么还要重复造轮子呢?因为目前市面上适配工具每一个都无法做到完美的效果,做出来的东西都差不多,最终实现效果都逃不出白边的手掌心,可以解决白边问题的,要么

    2023年04月23日
    浏览(41)
  • .NET使用EF批量插入数据,一行代码性能飙升!

    背景 小编最近接到一个任务,批量获取内部网站用TXT生成的日志,在闲时把日志插入到MySql数据库做分析。为了快速开发小编选择了Entity Framework Core,很快开发完成了。测试数据不是很多,批量插入数据很快完成,效率很高。但是部署到线上问题来了,最开始也挺快,越到后

    2024年02月13日
    浏览(48)
  • Java Mp3转化WAV/PCM音频数据,解码详细解析,提取每一帧数据集合/比特流/播放,一行代码!

    大家好!我是原子君 1 .因为Java本身只支持,wav,缺少mp3的解码器,所以Java自带的无法对mp3进行处理,这种 MPEG-*音频有损压缩标准编码 ,更不要说使用Java的音频格式和音频流就可以解决。 2 .所以本次转换需要使用到colorful1.1这种纯Java-Pc可跨平台的工具框架。 注意:colorful只支持

    2024年02月15日
    浏览(51)
  • Java8用Stream流一行代码实现数据分组统计,排序,最大值、最小值、平均值、总数、合计

    Java8对数据处理可谓十分流畅,既不改变数据,又能对数据进行很好的处理,今天给大家演示下,用Java8的Stream如何对数据进行分组统计,排序,求和等 汇总统计方法 找到汇总统计的方法。这些方法属于java 8的汇总统计类。 getAverage(): 它返回所有接受值的平均值。 getCount():

    2023年04月20日
    浏览(66)
  • 【Java-数据脱敏】使用Java对姓名、手机号码、证件号码进行数据脱敏

    一般证件号码使用 md5 算法的方式进行脱敏,这里我们直接使用 hutool 工具类中集成的 md5 ,需要导入 hutool 依赖。 (1)16位 (2)32位 (3)byte[]

    2024年02月16日
    浏览(41)
  • 一种配置化的数据脱敏与反脱敏框架实现

    在业务量日益剧增的背景下,大量数据在各种业务活动中产生,数据安全控制一直是治理的重要环节,数据脱敏属于安全控制的范畴。对互联网公司来说,数据安全一直是极为重视和敏感的话题。数据脱敏是指对某些敏感信息通过脱敏规则进行数据的变形,实现敏感隐私数据

    2024年02月16日
    浏览(38)
  • Java如何进行数据脱敏

    MYSQL(电话号码,身份证)数据脱敏的实现 1 2 3 4 5 6 7 8 -- CONCAT()、LEFT()和RIGHT()字符串函数组合使用,请看下面具体实现 -- CONCAT(str1,str2,…):返回结果为连接参数产生的字符串 -- LEFT(str,len):返回从字符串str 开始的len 最左字符 -- RIGHT(str,len):从字符串str 开始,返回最右len 字符

    2024年02月07日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包