Python爬虫(十)_正则表达式

这篇具有很好参考价值的文章主要介绍了Python爬虫(十)_正则表达式。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Python爬虫(十)_正则表达式,python,爬虫,正则表达式

什么是正则表达式

正则表达式,又称规则表达式,通常被用来检索、替换那些符合某个模式(规则)的文本。 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一些过滤逻辑。 给定一个正则表达式和另一个字符串,我们可以达到如下的目的:

  • 给定的字符串是否符合正则表达式的过滤逻辑(“匹配”)
  • 通过正则表达式,从文本字符串中获取到我们想要的特定部分(“过滤”)

Python爬虫(十)_正则表达式,python,爬虫,正则表达式

正则表达式匹配规则

Python爬虫(十)_正则表达式,python,爬虫,正则表达式

Python的re模块

在python中,我们可以使用内置的re模块来使用正则表达式。 有一点需要特别注意的是,正则表达式使用对特殊字符进行转义,所以如果我们要使用原始字符串,只需要一个r前缀,示例:

r'chuanzhiboke\t\.\tpython'

re模块的一般使用步骤如下:

  1. 使用compile()函数将正则表达式的字符串形式编译为一个Pattern对象
  2. 通过Pattern对象提供的一系列方法将文本进行匹配查找,获得匹配结果(一个Match对象)
  3. 最后使用Match对象提供的属性和方法获得信息,根据需要进行其他的操作。
compile对象

compile函数用于编译正则表达式,生成一个Pattern对象,它的一般使用形式如下:

import re

#将正则表达式编译为Pattern对象
pattern = re.compile(r'\d+')

在上面,我们已将一个正则表达式编译成Pattern对象,接下来,我们就可以利用pattern的一系列方法对文本进行匹配查找了。 Pattern对象的一些常用方法主要有:

  • match对象:从起始位置开始查找,一次匹配。
  • search对象:从任何位置开始查找,一次匹配。
  • findall()对象:全部匹配,返回列表。
  • finditer()对象:全部匹配,返回迭代器。
  • spilt()对象:分割字符串,返回列表
  • sub()对象:替换

match 方法 match方法用于查找字符串的头部(也可以指定起始位置),它是一次匹配,只要找到了一个匹配的结果返回,而不是查找所有匹配的结果,它的一般使用形式如下:

match(string[, pos[, endpos]])

其中,string是待匹配的字符串,pos和endpos是可选参数,指定字符串的起始和终点位置,默认值分别是0和len(字符串长度)。因此,当你不指定pos和endpos时,match方法默认匹配字符串的头部。

当匹配成功时,返回一个Match对象,如果没有匹配上,则返回None。

>>>import re
>>>pattern = re.compile(r'\d+')  #用于匹配至少一个数字

>>>m = pattern.match('one12twothree34four')  #查找头部,没有匹配
>>>print(m) #如果没有匹配上,就什么也不输出

>>>m = pattern.match('one12twothree34four', 2, 10) #从'e'的位置开始匹配,没有匹配到
>>>print(m)
>>>m = pattern.match('one12twothree34four', 3, 10) #从'1' 的位置开始匹配,正好匹配上
>>>print(m)
<_sre.SRE_Match object at 0x10a42aac0>
>>>m.group(0)   #可忽略0
'12'
>>>m.start(0)   #可忽略0
3
>>>m.end(0)    #可忽略0
5
>>>m.span(0)  #可忽略0
(3, 5)

在上面,当匹配成功时返回一个Match对象,其中:

  • group([group1,…])方法用于获得一个或多个分组匹配的字符串,当要获得整个匹配字符串的子串时,可直接使用group()或group(0);
  • start([group])方法用于获取分组匹配的子串在整个字符串中的起始位置(子串第一个字符的索引),参数默认值为0;
  • end([group])方法用于获取分组匹配的子串在整个字符串中的结束位置(子串最后一个字符的索引+1),参数默认值是0
  • span([group])方法返回(start[group], end(group))
>>>import re
>>>pattern = re.compile(r'([a-z]+) ([a-z]+)', re.I) #表示忽略大小写
>>>m = pattern.match('hello world wide web')

>>>print(m)  #匹配成功,返回一个Match对象
<_sre.SRE_Match object at 0x10bea83e8>

>>>m.group(0)  #返回匹配成功的整个子串
'Hello World'

>>>m.span(0)   #返回匹配成功的整个子串
(0, 11)

>>>m.group(1)   #返回第一个分组匹配成功的子串
'Hello'

>>>m.span(1)  #返回第一个分组匹配成功
(0, 5)

>>>m.group(2)   #返回第2个分组匹配成功的子串
'World'

>>>m.span(2)     #返回第2个分组匹配成功的子串的位置
(6, 11)

>>>m.groups()   #等价于(m.group(1), m.group(2), ...)
('Hello', 'World')

>>>m.group(3)   #不存在第3个分组
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: no such group

search方法 search方法用于查找字符串的任何位置,它也是一次匹配,只要找到了一个匹配的结果就返回,而不是查找所有匹配的结果,它的一般使用形式如下:

search[string[, pos[, endpos]]]

其中,string是待匹配的字符串,pos和endpos是可选参数,指定字符串的起始和终点位置,默认值分别是0和len(字符串长度)。 当匹配成功时,返回一个Match对象,如果没有匹配上,则返回None。 让我们看看例子:

>>>import re
>>>pattern = re.compile('\d+')
>>>m = pattern.search('one12twothree34four')  #这里如果使用match方法则不匹配
>>>m
<_sre.SRE_Match object at 0x10cc03ac0>
>>>m.group()
'12'
>>>m = pattern.search('one12twothree34four', 10, 30)   #指定字符串区间  
>>>m
<_sre.SRE_Match object at 0x10cc03b28>
>>>m.group()
'34'
>>>m.span()
(13, 15)

在看一个例子:

# coding:utf-8
import re
#将正则表达式编译成Pattern对象
pattern = re.compile(r'\d+')
#使用search()方法查找匹配的字符串,不存在匹配的子串时将不返回
m = pattern.search('hello 123456 789')
if m:
    #使用Match获得分组信息
    print('matching string:',m.group())
    #起始位置和结束位置
    print('position: ',m.span())

执行结果:

matching string: 123456
position:(6,12)

findall 方法 上面的match和search方法都是一次匹配,只要找到了一个匹配的结果就返回。然而,在大多数时候,我们需要搜索整个字符串,获得所有匹配的结果。 findall方法的使用形式如下:

findall(string[, pos[, endpos]])

其中,string是待匹配的字符串,pos和endpos是可选参数,指定字符串的起始和终点位置分别是0和len(字符串长度)。 findall是以列表形式返回全部能匹配到的子串,如果没有匹配,则返回一个空列表。

import re
pattern = re.compile(r'\d+')  #查找数字

result1 = pattern.findall('hello 123456 789')
result2 = pattern.findall('one1two2three3four4', 0, 10)

print(result1)
print(2)

执行结果如下:

['123456', '789']
['1', '2']

再来看一个例子:

import re
#re模块提供一个方法叫compile提供,提供我们输入一个匹配的规则
#然后返回一个pattern实例,我们根据这个规则去匹配字符串
pattern = re.compile(r'd+\.\d*')

#通过pattern.findall()方法能够全部匹配到我们得到的字符串
result = pattern.findall("123.141593, 'bigcat', 232312, 3.15")

#findall以列表形式 返回全部能匹配到的子串给result
for item in result:
    print(item)

运行结果:

123.141593
3.15

finditer方法 finditer方法的行为跟findall的行为类似,也是搜索整个字符串,获得所有匹配的结果。但它返回一个顺序访问每一个匹配结果(Match对象)的迭代器。

#coding:utf-8
import re

pattern = re.compile(r'\d+')

result1 = pattern.finditer('hello 123456 789')
result2 = pattern.finditer('one1two2three3four4', 0, 10)
print(result1)
print(result2)
print('result1....')
for m1 in result1:
    print("matching string:{} position:{}".format(m1.group(), m1.span()))

print('result2....')
for m2 in result2:
    print("matching string:{} position:{}".format(m2.group(), m2.span()))

执行结果:

<type 'callable-iterator'>
<type 'callable-iterator'>
result1.
matching string: 123456, position: (6, 12)
matching string: 789, position: (13, 16)
result2
matching string: 1, position: (3, 4)
matching string: 2, position: (7, 8)

split 方法 split方法按照能够匹配的子串将字符串分割后返回列表,它的使用形式如下:

split(string[, maxsplit])

其中,maxsplit用于指导最大分割次数,不知道静全部分割。 看看例子:

import re
p = re.compile(r'[\s\,;]+')
print(p.split('a,b;;c   d'))

执行结果:

['a', 'b', 'c', 'd']

sub方法 sub方法用于替换。它的使用形式如下:

sub(repl, string[, count])

其中,repl可以是字符串也可以是一函数:

  • 如果repl是字符串,则会使用repl去替换字符串每一个匹配的子串,并返回替换后的字符串,repl还可以使用id的形式来引用过分组,但不能使用编号0;
  • 如果repl是函数,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
  • count用于指导最多替换次数,不指定时全部替换。

看看例子:

import re
p = re.compile(r'(\w+) (\w+)')  #\w=[A-Za-z0-9]
s = 'hello 123, hello 456'

print(p.sub(r'hello world', s))   #使用'hello world'替换'hello 123''hello 456'
print(p.sub(r'\2 \1', s))

def func(m):
    return 'hi' + ' ' + m.group(2)

print(p.sub(func, s))
print(p.sub(func, s, 1))

执行结果:

hello world, hello world
123 hello, 456 hello
hi 123, hi 456
hi 123, hello 456

匹配中文 在某些情况下,我们想要匹配文本中的汉字,有一点需要注意的是,中文的unicode编码范围主要在[u4e00-u9fa5],这里说主要是因为这个范围并不完整,比如没有包括全角(中文)标点,不过,在大部分情况下,应该是够用的。 假设现在想把字符串title=u’你好,hello,世界’中的中文提取出来,可以这么做:

import re
title = u'你好,hello,世界'
pattern = re.compile(u'[\u4e00-\u9fa5]+')
result = pattern.findall(title)

print(result)

注意到,我们在正则表达式前面加上了前缀u,u表示unicode字符串。 执行结果:

['你好', '世界']

注意:贪婪模式与非贪婪模式

  1. 贪婪模式:在整个表达式匹配成功的前提下,尽可能多的匹配(*);
  2. 非贪婪模式:在整个表达式匹配成功的前提下,尽可能少的匹配(?);
  3. Python里数量词默认是贪婪的。
实例一:源字符串:abbbc
  • 使用贪婪的数量词的正则表达式ab+,匹配结果:abbb。 *决定了尽可能多匹配b,所以a后面所有的b都出现了。
  • 使用非贪婪的数量词的正则表达式ab*?,匹配结果:a。 即使前面有*,但是?决定了尽可能少匹配b,所以没有b。
实例二:源字符串:aa<div>test1</div>bb<div>test2</div>cc
  • 使用贪婪的数量词的正则表达式:<div>.*</div>
  • 匹配结果:<div>test1</div>bb<div>test2</div> 这里采用的是贪婪模式。在匹配到第一个“</div>”时已经可以使整个表达式匹配成功,但是由于采用的是贪婪模式,所以仍然要向右尝试匹配,查看是否还有更长的可以成功匹配的子串。匹配到第二个“</div>”后,向右再没有可以成功匹配的子串,匹配结束,匹配结果为“<div>test1</div>bb<div>test2</div>
  • 使用非贪婪的数量词的正则表达式:<div>.*?</div>
  • 匹配结果:<div>test1</div> 正则表达式二采用的是非贪婪模式,在匹配到第一个“</div>”时使整个表达式匹配成功,由于采用的是非贪婪模式,所以结束匹配,不再向右尝试,匹配结果为“<div>test1</div>”。

更多Python的学习资料可以扫描下方二维码无偿领取!!!

1)Python所有方向的学习路线(新版)

总结的Python爬虫和数据分析等各个方向应该学习的技术栈。

Python爬虫(十)_正则表达式,python,爬虫,正则表达式

比如说爬虫这一块,很多人以为学了xpath和PyQuery等几个解析库之后就精通的python爬虫,其实路还有很长,比如说移动端爬虫和JS逆向等等。

Python爬虫(十)_正则表达式,python,爬虫,正则表达式

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然达不到大佬的程度,但是精通python是没有问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

Python爬虫(十)_正则表达式,python,爬虫,正则表达式

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

Python爬虫(十)_正则表达式,python,爬虫,正则表达式

文章来源地址https://www.toymoban.com/news/detail-639868.html

到了这里,关于Python爬虫(十)_正则表达式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【python】网络爬虫与信息提取--正则表达式

            正则表达式是用来简洁表达一组字符串的表达式。是通用的字符串表达框架,简洁表达一组字符串的表达式,针对字符串表达“简洁”和“特征”思想的工具,判断某字符串的特征归属。         用处:表达文本类型的特征;同时查找或替换一组字符串;匹配字符串

    2024年02月19日
    浏览(74)
  • 〖Python网络爬虫实战⑨〗- 正则表达式基本原理

    订阅:新手可以订阅我的其他专栏。免费阶段订阅量1000+                  python项目实战                 Python编程基础教程系列(零基础小白搬砖逆袭) 说明:本专栏持续更新中,目前专栏免费订阅,在转为付费专栏前订阅本专栏的,可以免费订阅付费专栏,

    2023年04月15日
    浏览(88)
  • 《零基础入门学习Python》第060讲:论一只爬虫的自我修养8:正则表达式4

    有了前面几节课的准备,我们这一次终于可以真刀真枪的干一场大的了,但是呢,在进行实战之前,我们还要讲讲正则表达式的实用方法和扩展语法,然后再来实战,大家多把持一会啊。 我们先来翻一下文档: 首先,我们要举的例子是讲得最多的 search() 方法,search() 方法

    2024年02月15日
    浏览(55)
  • Python正则表达式之学习正则表达式三步曲

            正则表达式描述了一种字符串匹配的模式,可以用来检查一个串的有无某子串,或者做子串匹配替换,取出子串等操作。也可以说正则表达式就是字符串的匹配规则,也可以理解为是一种模糊匹配,匹配满足正则条件的字符串。         1、数据验证(eg:表单验

    2024年02月15日
    浏览(59)
  • python正则表达式-正则基础

    目录 一、任一元素 二、匹配特定的字符类别          1、d  w 三、多个元素          1、两位元素 [][]          2、* + ?          3、重复次数 {}          4、位置匹配 ^ $          5、子表达式()         []:1、[ab] 匹配a或b;        2、[0-9] 匹配任意一个数

    2024年02月05日
    浏览(44)
  • 老夫的正则表达式大成了,桀桀桀桀!!!【Python 正则表达式笔记】

    特殊字符 .^$?+*{}[]()| 为特殊字符,若想要使用字面值,必须使用 进行转义 字符类 [] [] 匹配包含在方括号中的任何字符。它也可以指定范围,例: [a-zA-Z0-9] 表示a到z,A到Z,0到9之间的任何一个字符 [u4e00-u9fa5] 匹配 Unicode 中文 [^x00-xff] 匹配双字节字符(包括中文) 在 [] 中

    2024年02月04日
    浏览(58)
  • python 正则表达式

    2024年01月17日
    浏览(54)
  • PYthon正则表达式

    正则表达式是对字符串(包括普通字符(例如,a 到 z 之间的字母)和特殊字符(称为“元字符”))操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。正则

    2024年01月17日
    浏览(45)
  • 机器学习与数据科学-专题1 Python正则表达式-【正则表达式入门-1】

    为了完成本关任务,你需要掌握: 在 Python 中使用正则表达式; 最基础正则表达式; 正则匹配函数。 在 Python 中使用正则表达式 正可谓人生苦短,我用 Python。Python 有个特点就是库非常多,自然拥有正则匹配这种常见的库,并且此库已经嵌入在 Python 标准库中,使用起来非常

    2024年01月22日
    浏览(58)
  • Python正则表达式(小结)

    正则表达式(regular expression,有时简写为RegEx 或 regex)就是用一组由字母和符号组成的“表达式”来描述一个特征,然后去验证另一个“字符串”是否符合/匹配这个特征。 (1)验证字符串是否符合指定特征,比如验证邮件地址是否符合特定要求等; (2)用来查找字符串,

    2024年02月05日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包