【深度学习】多粒度、多尺度、多源融合和多模态融合的区别

这篇具有很好参考价值的文章主要介绍了【深度学习】多粒度、多尺度、多源融合和多模态融合的区别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

多粒度(multiresolution)和多尺度(multiscale)

多粒度(multiresolution)和多尺度(multiscale)都是指在不同的空间或时间尺度上对数据或信号进行分析和处理。其中

  1. 多尺度:通常是指在不同的空间或时间尺度上对数据或信号进行分析和处理,通常采用不同的滤波器或分解方法,以从低到高分析不同尺度的信号结构。例如,在图像处理中,可以使用高斯金字塔或小波变换对图像进行多尺度分析。多尺度分析可以用于识别不同尺度的特征,例如,在图像中检测不同大小的物体或在信号中检测不同频率的成分。
  2. 多粒度:则更加强调数据的分辨率不同,特别是在数字图像处理中,指的是不同分辨率的图像表示。例如,通过对原始图像进行下采样,可以得到具有不同分辨率的图像金字塔,然后可以将这些图像用于不同的应用,例如图像压缩或目标检测。多粒度分析也可以应用于其他领域,例如地理信息系统和信号处理中。因此,虽然多尺度和多粒度的概念有一些相似之处,但它们的应用范围和重点略有不同。

多源数据融合和多模态数据融合

  1. 多源信息融合(简称为信息融合):是指组合和合并多个来源的信息或数据以便形成一个统一结果的技术。它起源于军事领域中的多传感器综合应用,往往又叫多传感器数据融合(或数据融合),是对人或动物利用各种感官来获取信息并通过大脑综合分析来认识客观世界的一种功能模拟。随着研究的进展,信息融合领域中的“传感器”泛指各种信息来源,除了电子传感器,还包括数据库、网络系统等等。
  2. 多模态融合:一般来说,模态是指事物发生或存在的方式,多模态是指两个或者两个以上的模态的各种形式的组合。对每一种信息的来源或者形式,都可以称为一种模态(Modality),目前研究领域中主要是对图像、文本和语音三种模态的处理。之所以要对模态进行融合,是因为不同模态的表现方式不一样,看待事物的角度也会不一样,所以存在一些交叉(所以存在信息冗余),互补(所以比单特征更优秀) 的现象,甚至模态间可能还存在多种不同的信息交互,如果能合理的处理多模态信息,就能得到丰富特征信息。多模态数据的融合策略主要包括数据级融合、特征级融合和决策级融合,在数据分析的不同阶段选取恰当的融合策略,利用多模态数据之间的信息互补来提升数据分析的准确性。

融合的策略

传统特征融合算法主要可以分为三类:
1.基于贝叶斯决策理论的算法 2.基于稀疏表示理论的算法 3.基于深度学习理论算法。传统方法不做整理,其中的深度学习方法按照融合的层次从下到上每一层都可以fusion:文章来源地址https://www.toymoban.com/news/detail-639870.html

  1. pixel level(像素级):对原始数据最小粒度进行融合。
  2. feature level (特征级):对抽象的特征进行融合,这也是用的最多的。包括early 和 late fusion,代表融合发生在特征抽取的早期和晚期,如上图。early是指先将特征融合后(concat、add)再输出模型,缺点是无法充分利用多个模态数据间的互补性,且存在信息冗余问题(可由PCA,AE等方法缓解)。late分融合和不融合两种形式,不融合有点像集成学习,不同模态各自得到的结果了之后再统一打分进行融合,好处是模型独立鲁棒性强。融合的方式即在特征生成过程中(如多层神经网络的中间)进行自由的融合,灵活性比较高,如金字塔融合。
  3. decision level(决策级):对决策结果进行融合,这就和集成学习很像了。
  4. hybrid(混合):混合融合多种融合方法。
    【深度学习】多粒度、多尺度、多源融合和多模态融合的区别,深度学习,人工智能

到了这里,关于【深度学习】多粒度、多尺度、多源融合和多模态融合的区别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 云计算实战应用案例精讲-【深度学习】多模态融合(论文篇一)

    目录 基于多模态信息融合的社交媒体谣言检测 理论基础及相关技术 2.1 特征学习

    2024年02月05日
    浏览(50)
  • 云计算实战应用案例精讲-【深度学习】多模态融合(附python代码实现)

    目录 前言 几个高频面试题目 为什么Transformer适合做多模态任务?

    2024年04月16日
    浏览(46)
  • zore-shot,迁移学习和多模态学习

    定义 :在ZSL中,某一类别在训练样本中未出现,但是我们知道这个类别的特征,然后通过语料知识库,便可以将这个类别识别出来。概括来说,就是已知描述,对未知类别(未在训练集中出现的类别)进行推理。 以下图为例简述 :比方说我们有个1000分类的大模型,但这个模

    2024年02月14日
    浏览(35)
  • AutoKeras(Python自动化机器学习)多模态数据和多任务

    AutoKeras 拓扑 常规机器学习:scikit-learn示例探索性数据分析和数据预处理,线性回归,决策树 图像分类ResNet模型示例,合成数据集DenseNet模型示例 绘图线性回归和决策树模型 使用Python工具seaborn、matplotlib、pandas、scikit-learn进行特征分析,数据处理 Tensorflow和Keras实现多测感知器

    2024年02月21日
    浏览(51)
  • 多尺度目标检测【动手学深度学习】

            在上篇博客《锚框【目标检测】》中,我们以输入图像的每个像素为中心,生成多个锚框。基本而言,这些锚框代表了图像不同区域的样本。然而如果以每个像素都生成的锚框,最后可能会得到太多需要计算的锚框。想象一个561×728的输入图像,如果以每个像素为

    2024年02月13日
    浏览(35)
  • 多源数据融合 Sar & Optical(一)像素级融合

    根据图像表征层次的不同,图像融合可分为三个层次的融合:像素级融合、特征级融合和决策级融合, 下图是像融合层级划分图。 其中像素级融合位于最低层,可以看作是对信息仅作特征提取并直接使用。也正是得益于其对信息最大程度上的保留,使其在准确性和鲁棒性上

    2024年02月09日
    浏览(42)
  • 图像融合论文阅读:CoCoNet: 基于多层特征集成的耦合对比学习网络多模态图像融合

    @article{liu2023coconet, title={Coconet: Coupled contrastive learning network with multi-level feature ensemble for multi-modality image fusion}, author={Liu, Jinyuan and Lin, Runjia and Wu, Guanyao and Liu, Risheng and Luo, Zhongxuan and Fan, Xin}, journal={International Journal of Computer Vision}, pages={1–28}, year={2023}, publisher={Springer} } 论文级

    2024年02月04日
    浏览(54)
  • 一文理解深度学习中的多尺度和不同感受野(视野)信息

    如何理解深度学习中的多尺度和不同视野信息 在进行图像处理的深度模型中,合理理解并利用不同尺度信息和不同视野信息将对图像结果有意想不到的结果,那么具体什么是多尺度信息,什么是不同视野信息 1.不同尺度信息 多尺度是指不同尺度的信号采样,在不同尺度下可

    2024年02月16日
    浏览(48)
  • ChatGPT是否能够处理多模态数据和多模态对话?

    ChatGPT有潜力处理多模态数据和多模态对话,这将进一步扩展其在各种应用领域中的实用性。多模态数据是指包含多种不同类型的信息,例如文本、图像、音频和视频等。多模态对话是指涉及多种媒体形式的对话交流,例如同时包含文本和图像的对话。 **1. 多模态数据处理:

    2024年02月14日
    浏览(52)
  • 论文阅读:基于深度学习的大尺度遥感图像建筑物分割研究

    一、该网络中采用了上下文信息捕获模块。通过扩大感受野,在保留细节信息的同时,在中心部分进行多尺度特征的融合,缓解了传统算法中细节信息丢失的问题;通过自适应地融合局部语义特征,该网络在空间特征和通道特征之间建立长距离的依赖关系; 二、分割网络:边

    2024年02月15日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包