Opencv-C++笔记 (15) : 像素重映射 与 图像扭曲

这篇具有很好参考价值的文章主要介绍了Opencv-C++笔记 (15) : 像素重映射 与 图像扭曲。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、重映射简介

重映射,就是把一幅图像中某位置的像素放置到另一图像指定位置的过程。即:
Opencv-C++笔记 (15) : 像素重映射 与 图像扭曲,Opencv_C++学习笔记,opencv,c++,笔记
在重映射过程中,图像的大小也可以同时发生改变。此时像素与像素之间的关系就不是一一对应关系,因此在重映射过程中,可能会涉及到像素值的插值计算。

Remap(
InputArray src,       输入图像(灰度图或真彩图均可)
OutputArray dst,       输出图像(要求大小和xmap,ymap相同,通道数目及数据类型和src相同)
InputArray map1,      x 映射表 CV_32FC1/CV_32FC2
InputArray map2,      y 映射表
int interpolation,       选择的插值方法,常见线性插值,可选择立方等
int borderMode,       BORDER_CONSTANT
const Scalar borderValue   color
)

头文件 quick_opencv.h:声明类与公共函数

#pragma once
#include <opencv2\opencv.hpp>
using namespace cv;

class QuickDemo {
public:
	...
	void remap_Demo(Mat& image1);
	void MLS(Mat& src, std::vector<Point> p, std::vector<Point> q);
	void MLS(Mat& src, int* p, int* q, int rows, int cols);
};

主函数调用该类的公共成员函数

#include <opencv2\opencv.hpp>
#include <quick_opencv.h>
#include <iostream>
using namespace cv;


int main(int argc, char** argv) {
	Mat src = imread("D:\\Desktop\\pandas_small22.png");
	if (src.empty()) {
		printf("Could not load images...\n");
		return -1;
	}
	
	QuickDemo qk;
	qk.remap_Demo(src);

	vector<Point> p{
		Point(30, 147), Point(147, 147), Point(268, 147), Point(112, 148),
		Point(186, 148), Point(98, 316), Point(211, 316)
	};
	vector<Point> q{ 
		Point(28, 209), Point(126, 143), Point(282, 26), Point(71, 236), 
		Point(136, 240), Point(79, 313), Point(190, 310)
	};
	qk.MLS(src1, p, q);

	int p_array[7][2] = { {30, 147}, {147, 147}, {268, 147}, {112, 148}, {186, 148}, {98, 316}, {211, 316} };
	int q_array[7][2] = { {28, 209}, {126, 143}, {282, 26},  {71, 236},  {136, 240}, {79, 313}, {190, 310} };
	qk.MLS(src1, (int *)p_array, (int*)q_array, 7, 2);
	waitKey(0);
	destroyAllWindows();
	return 0;
}

源文件 quick_demo.cpp:实现类与公共函数

void update_map(Mat& image, int index, Mat& x_map, Mat& y_map) {
	int height = image.rows;
	int width = image.cols;
	double h_41 = height * 0.25;
	double h_43 = height * 0.75;
	double w_41 = width * 0.25;
	double w_43 = width * 0.75;
	for (int h = 0; h < height; h++) {
		float* x_ptr = x_map.ptr<float>(h);
		float* y_ptr = y_map.ptr<float>(h);
		for (int w = 0; w < width; w++) {
			switch (index)
			{
			case 0:
				if (h > h_41 && h < h_43 && w>w_41 && w < w_43) {
					*x_ptr++ = 2 * (w - w_41 + 0.5);
					*y_ptr++ = 2 * (h - h_41 + 0.5);
				}
				else
				{
					*x_ptr++ = 0;
					*y_ptr++ = 0;
				}
				break;
			case 1:
				*x_ptr++ = width - w - 1;
				*y_ptr++ = h;
				break;
			case 2:
				*x_ptr++ = w;
				*y_ptr++ = height - h - 1;
				break;
			case 3:
				*x_ptr++ = width - w - 1;
				*y_ptr++ = height - h - 1;
				break;
			}
		}
	}

}
void QuickDemo::remap_Demo(Mat& image) {
	Mat dst, x_map, y_map;
	int index = 0;
	x_map.create(image.size(), CV_32FC1);
	y_map.create(image.size(), CV_32FC1);

	
	int c = 0;
	while (true)
	{
		c = waitKey(400);
		if ((char)c==27){
			break;
		}
		index = c % 4;
		update_map(image,index, x_map, y_map);
		remap(image, dst, x_map, y_map, INTER_LINEAR, BORDER_CONSTANT, Scalar(255, 0, 0));
		imshow("remap", dst);
	}
}

如上两个函数,update_map,用于更新remap的具体映射方法,remap_Demo为调用函数。
Opencv-C++笔记 (15) : 像素重映射 与 图像扭曲,Opencv_C++学习笔记,opencv,c++,笔记

二、图像扭曲

MLS算法 图像扭曲 Image Deformation Using Moving Least Squares 论文。
最小二乘法(MLS)对图像进行变形 python 实现
Opencv-C++笔记 (15) : 像素重映射 与 图像扭曲,Opencv_C++学习笔记,opencv,c++,笔记
Opencv-C++笔记 (15) : 像素重映射 与 图像扭曲,Opencv_C++学习笔记,opencv,c++,笔记

Point NewPoint(Point V, vector<Point> p, vector<Point> q){
	vector<float>W;
	Point p_star, q_star = Point(0, 0);
	for (int i = 0; i <= p.size() - 1; i++){
		float temp;
		if (p[i] == V){
			temp = INT_MAX;
		}else{
			temp = 1.0 / (((p[i].x - V.x) * (p[i].x - V.x)) + ((p[i].y - V.y) * (p[i].y - V.y)));
		}
		W.push_back(temp);
	}
	float px = 0, py = 0, qx = 0, qy = 0, W_sum = 0;
	for (int i = 0; i <= W.size() - 1; i++){
		px += W[i] * p[i].x;
		py += W[i] * p[i].y;

		qx += W[i] * q[i].x;
		qy += W[i] * q[i].y;
		W_sum += W[i];
	}

	p_star.x = px / W_sum;
	p_star.y = py / W_sum;

	q_star.x = qx / W_sum;
	q_star.y = qy / W_sum;

	vector<Point> p_hat, q_hat;

	for (int i = 0; i <= p.size() - 1; i++){
		p_hat.push_back(p[i] - p_star);
		q_hat.push_back(q[i] - q_star);
	}
	Mat pi_hat_t_ = Mat::zeros(2, 1, CV_32FC1);
	Mat_<float> pi_hat_t = pi_hat_t_;

	Mat pi_hat_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> pi_hat = pi_hat_;

	Mat M_1_ = Mat::zeros(2, 2, CV_32FC1);
	Mat_<float> M_1 = M_1_;


	for (int i = 0; i <= p_hat.size() - 1; i++){
		pi_hat_t.at<float>(0, 0) = p_hat[i].x;
		pi_hat_t.at<float>(1, 0) = p_hat[i].y;

		pi_hat.at<float>(0, 0) = p_hat[i].x;
		pi_hat.at<float>(0, 1) = p_hat[i].y;

		M_1 += pi_hat_t * W[i] * pi_hat;
	}
	Mat_<float> M_1_inv = M_1.inv();
	M_1 = M_1_inv;

	Mat pj_hat_t_ = Mat::zeros(2, 1, CV_32FC1);
	Mat_<float> pj_hat_t = pj_hat_t_;

	Mat qj_hat_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> qj_hat = qj_hat_;

	Mat M_2_ = Mat::zeros(2, 2, CV_32FC1);
	Mat_<float> M_2 = M_2_;

	for (int j = 0; j <= q.size() - 1; j++){
		pj_hat_t.at<float>(0, 0) = p_hat[j].x;
		pj_hat_t.at<float>(1, 0) = p_hat[j].y;
		qj_hat.at<float>(0, 0) = q_hat[j].x;
		qj_hat.at<float>(0, 1) = q_hat[j].y;
		M_2 += W[j] * pj_hat_t * qj_hat;
	}
	Mat_<float> M = M_1 * M_2;//ok
	//cout << "M = " << M << endl;

	Point x_p_star = V - p_star;

	Mat M_x_p_star_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> M_x_p_star = M_x_p_star_;

	M_x_p_star.at<float>(0, 0) = x_p_star.x;
	M_x_p_star.at<float>(0, 1) = x_p_star.y;

	Mat M_q_star_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> M_q_star = M_q_star_;

	M_q_star.at<float>(0, 0) = q_star.x;
	M_q_star.at<float>(0, 1) = q_star.y;

	Mat_<float> Lv = M_x_p_star * M + M_q_star;
	return Point(Lv.at<float>(0, 0), Lv.at<float>(0, 1));
}



void QuickDemo::MLS(Mat& src, std::vector<Point> p, std::vector<Point> q){
    double time0 = static_cast<double>(getTickCount());
	Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);
	for (int i = 0; i < src.rows; i++){
		for (int j = 0; j < src.cols; j++){
			Point old = Point(j, i);
			Point new_point = NewPoint(old, p, q);
			//cout << "old = " << old << "\tnew  = " << new_point << endl;

			dst.at<Vec3b>(i, j) = src.at<Vec3b>(abs(new_point.y), abs(new_point.x));
		}
	}
    double time1 = static_cast<double>(getTickCount());
	cout << "Total cost time is " << ((time1 - time0) / getTickFrequency()) << "seconds" << endl;
	imshow("dst_msl", dst);
}

重载函数

Point NewPoint(Point V, float* W, int* p, int* q , float* p_hat, float* q_hat, int rows, int cols) {
	Point p_star, q_star = Point(0, 0);
	float temp = 0;
	float px = 0, py = 0, qx = 0, qy = 0, W_sum = 0;
	for (int i = 0; i < rows; i++) {
		int p_0 = *(p + i * cols);
		int p_1 = *(p + i * cols + 1);
		if (!(p_0 == V.x && p_1 == V.y)) {
			temp = 1.0 / (((p_0 - V.x) * (p_0 - V.x)) + ((p_1 - V.y) * (p_1 - V.y)));
		}else {
			temp = INT_MAX;
		}
		W[i] = temp;
		px += temp * p_0;
		py += temp * p_1;

		qx += temp * (*(q + i * cols));
		qy += temp * (*(q + i * cols + 1));

		W_sum += temp;
	}

	p_star.x = px / W_sum;
	p_star.y = py / W_sum;

	q_star.x = qx / W_sum;
	q_star.y = qy / W_sum;


	for (int i = 0; i < rows; i++) {
		*(p_hat + i * cols) = *(p + i * cols) - p_star.x;
		*(p_hat + i * cols + 1) = *(p + i * cols + 1) - p_star.y;

		*(q_hat + i * cols) = *(q + i * cols) - p_star.x;
		*(q_hat + i * cols + 1) = *(q + i * cols + 1) - p_star.y;
	}

	// ====================================
	Mat pi_hat_t_ = Mat::zeros(2, 1, CV_32FC1);
	Mat_<float> pi_hat_t = pi_hat_t_;

	Mat pi_hat_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> pi_hat = pi_hat_;

	Mat M_1_ = Mat::zeros(2, 2, CV_32FC1);
	Mat_<float> M_1 = M_1_;

	// ====================================
	Mat pj_hat_t_ = Mat::zeros(2, 1, CV_32FC1);
	Mat_<float> pj_hat_t = pj_hat_t_;

	Mat qj_hat_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> qj_hat = qj_hat_;

	Mat M_2_ = Mat::zeros(2, 2, CV_32FC1);
	Mat_<float> M_2 = M_2_;
	// ====================================
	for (int i = 0; i < rows; i++) {
		float p_hat_x = *(p_hat + i * cols);
		float p_hat_y = *(p_hat + i * cols + 1);

		pi_hat_t.at<float>(0, 0) = p_hat_x;
		pi_hat_t.at<float>(1, 0) = p_hat_y;
		pi_hat.at<float>(0, 0) = p_hat_x;
		pi_hat.at<float>(0, 1) = p_hat_y;
		M_1 += pi_hat_t * W[i] * pi_hat;

		pj_hat_t.at<float>(0, 0) = p_hat_x;
		pj_hat_t.at<float>(1, 0) = p_hat_y;
		qj_hat.at<float>(0, 0) = *(q_hat + i * cols);
		qj_hat.at<float>(0, 1) = *(q_hat + i * cols + 1);
		M_2 += pj_hat_t * W[i] * qj_hat;
	}
	Mat_<float> M_1_inv = M_1.inv();
	M_1 = M_1_inv;

	Mat_<float> M = M_1 * M_2;

	//=====================================
	//
	// 	  如下为总公式计算
	//
	//======================================

	Point x_p_star = V - p_star;

	Mat M_x_p_star_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> M_x_p_star = M_x_p_star_;

	M_x_p_star.at<float>(0, 0) = x_p_star.x;
	M_x_p_star.at<float>(0, 1) = x_p_star.y;

	Mat M_q_star_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> M_q_star = M_q_star_;

	M_q_star.at<float>(0, 0) = q_star.x;
	M_q_star.at<float>(0, 1) = q_star.y;

	Mat_<float> Lv = M_x_p_star * M + M_q_star;
	return Point(Lv.at<float>(0, 0), Lv.at<float>(0, 1));

}


void QuickDemo::MLS(Mat& src, int* p, int* q, int rows, int cols) {
	double time0 = static_cast<double>(getTickCount());
	Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);
	assert(7 == rows);               // 若断言失败请修改如下三个数组的长度为rows
	float W[7] = { 0 };              // 权重长度为p数组长度:rows=7
	float p_hat[7][2] = { 0 };       // p_hat长度为p数组长度:rows=7
	float q_hat[7][2] = { 0 };       // q_hat长度为p数组长度:rows=7
	for (int i = 0; i < src.rows; i++) {
		for (int j = 0; j < src.cols; j++) {
			Point new_point = NewPoint(Point(j, i), W, p, q, (float*)p_hat, (float*)p_hat, rows, cols);
			//cout << "old = " << old << "\tnew  = " << new_point << endl;

			dst.at<Vec3b>(i, j) = src.at<Vec3b>(abs(new_point.y), abs(new_point.x));
			//cout << "src.at<uchar> = " << src.at<Vec3b>(new_point.y,new_point.x) << endl;
		}
	}
	double time1 = static_cast<double>(getTickCount());
	cout << "Total cost time is " << ((time1 - time0) / getTickFrequency()) << "seconds" << endl;
	imshow("dst_msl", dst);
}
————

Opencv-C++笔记 (15) : 像素重映射 与 图像扭曲,Opencv_C++学习笔记,opencv,c++,笔记
鸣谢与拓展阅读:
使用范例 记录四图像处理之瘦脸 MLS算法 C++实现
OpenCV局部变形算法探究添加链接描述
基于移动最小二乘(MLS)的图像扭曲刚性变形python实现
使用重映射实现图像的局部扭曲 来实现 图像增强。文章来源地址https://www.toymoban.com/news/detail-639895.html

到了这里,关于Opencv-C++笔记 (15) : 像素重映射 与 图像扭曲的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python中OpenCV透视变换恢复扭曲图像

    在处理图像问题时,经常会遇到将要处理的目标的位置是斜的,需要使用透视变换进行矫正。如下图,该图片中左边的目标是扭曲倾斜拍摄的,那么任务就是将其矫正过来,如下图右图所示。 前提1:这里假设我已经知道四个点坐标(可用深度学习方法检测/分割)和目标宽高

    2024年01月20日
    浏览(38)
  • Opencv-C++笔记 (12) : opencv-仿射变化

    介绍完图像的缩放和翻转后,接下来将要介绍图像的旋转,但是在OpenCV 4中并没有专门用于图像旋转的函数,而是通过图像的仿射变换实现图像的旋转。实现图像的旋转首先需要确定旋转角度和旋转中心,之后确定旋转矩阵,最终通过仿射变换实现图像旋转。 针对这个流程,

    2024年02月11日
    浏览(24)
  • Opencv-C++笔记 (2) : opencv的矩阵操作

    OpenCV中的矩阵操作非常重要,本文总结了矩阵的创建、初始化以及基本矩阵操作,给出了示例代码,主要内容包括: 建立矩阵必须要指定矩阵存储的数据类型,图像处理中常用的几种数据类型如下: 包括数据位深度8位、32位,数据类型U:uchar、F:float型以及通道数C1:单通道、

    2024年02月11日
    浏览(23)
  • Opencv-C++笔记 (5) : opencv-形态学

    形态学运算是针对二值图像依据数学形态学(Mathematical Morphology)的集合论方法发展起来的图像处理方法。数学形态学起源于岩相学对岩石结构的定量描述工作,近年来在数字图像处理和机器视觉领域中得到了广泛的应用,形成了一种独特的数字图像分析方法和理论。 结构元素

    2024年02月09日
    浏览(26)
  • Opencv-C++笔记 (6) : opencv-图片和视频操作

    filename:需要读取图像的文件名称,包含图像地址、名称和图像文件扩展名 flags:读取图像形式的标志,如将彩色图像按照灰度图读取,默认参数是按照彩色图像格式读取,可 选参数在表2-3给出。 函数用于读取指定的图像并将其返回给一个Mat类变量,如果图像文件不存在、破

    2024年02月09日
    浏览(26)
  • 14- OpenCV:像素重映射和直方图相关处理

    目录 一、像素重映射 1、像素重映射的含义 2、应用场景 3、相关的API(例子演示) 二、直方图 1、直方图的介绍 2、直方图均衡化 3、直方图计算(归一化) 4、直方图比较 5、直方图反向投影 一、像素重映射 1、像素重映射的含义         像素重映射(Pixel Remapping)是一

    2024年01月25日
    浏览(29)
  • Opencv-C++笔记 (18) : 轮廓和凸包

    轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法。 所以边缘提取的阈值选定会影响最终轮廓发现结果 轮廓查找步骤: 输入图像转为灰度图像cvtColor 使用Canny进行边缘提取或者threshold阈值操作,得到二值图像 使用findContours寻找轮廓 使用drawContours绘制轮廓 在二值图像

    2024年02月11日
    浏览(21)
  • ROS学习笔记15:ROS与OpenCV结合处理图像

      安装OpenCV sudo apt-get install ros-kinetic-vision-opencv libopencv-dev python-opencv   ROS进行图像处理是依赖于OpenCV库的。ROS通过一个叫CvBridge的功能包,将获取的图像数据转换成OpenCV的格式,OpenCV处理之后,传回给ROS进行图像显示(应用),如下图:   我们使用ROS驱动获取摄像头数

    2024年02月05日
    浏览(29)
  • Opencv-C++笔记 (9) : opencv-多通道分离和合并

    在图像颜色模型中不同的分量存放在不同的通道中,如果我们只需要颜色模型的某一个分量,例如只需要处理RGB图像中的红色通道,可以将红色通道从三通道的数据中分离出来再进行处理,这种方式可以减少数据所占据的内存,加快程序的运行速度。同时,当我们分别处理完

    2024年02月09日
    浏览(30)
  • 【计算机视觉—python 】 图像处理入门教程 —— 图像属性、像素编辑、创建与复制、裁剪与拼接【 openCV 学习笔记 005 to 010 and 255】

    OpenCV中读取图像文件后的数据结构符合Numpy的ndarray多维数组结构,因此 ndarray 数组的属性和操作方法可用于图像处理的一些操作。数据结构如下图所示: img.ndim:查看代表图像的维度。彩色图像的维数为3,灰度图像的维度为2。 img.shape:查看图像的形状,代表矩阵的行数(高

    2024年01月19日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包