opencv基础57-模板匹配cv2.matchTemplate()->(目标检测、图像识别、特征提取)

这篇具有很好参考价值的文章主要介绍了opencv基础57-模板匹配cv2.matchTemplate()->(目标检测、图像识别、特征提取)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

OpenCV 提供了模板匹配(Template Matching)的功能,它允许你在图像中寻找特定模板(小图像)在目标图像中的匹配位置。模板匹配在计算机视觉中用于目标检测、图像识别、特征提取等领域。

以下是 OpenCV 中使用模板匹配的基本步骤:

  1. 加载图像: 首先,加载目标图像和要匹配的模板图像。

  2. 选择匹配方法: 选择适当的匹配方法,例如 cv2.TM_CCOEFF、cv2.TM_CCOEFF_NORMED、cv2.TM_CCORR、cv2.TM_CCORR_NORMED、cv2.TM_SQDIFF 或 cv2.TM_SQDIFF_NORMED。每种方法对应不同的匹配计算方式。

  3. 应用模板匹配: 使用 cv2.matchTemplate() 函数来进行模板匹配,该函数返回匹配结果的矩阵。

  4. 找到最佳匹配位置: 在匹配结果矩阵中,通过分析像素值找到最佳匹配位置,即目标图像中的匹配位置。

模板匹配是指在当前图像 A 内寻找与图像 B 最相似的部分,一般将图像 A 称为输入图像,将图像 B 称为模板图像。模板匹配的操作方法是将模板图像 B 在图像 A 上滑动,遍历所有像素以完成匹配。

例如,在图 15-1 中,希望在图中的大图像“lena”内寻找左上角的“眼睛”图像。此时,大图像“lena”是输入图像,“眼睛”图像是模板图像。查找的方式是,将模板图像在输入图像内从左上角开始滑动,逐个像素遍历整幅输入图像,以查找与其最匹配的部分。

opencv基础57-模板匹配cv2.matchTemplate()->(目标检测、图像识别、特征提取),opencv,计算机视觉,人工智能,opencv,目标检测,人工智能,计算机视觉,python,图像处理

模板匹配函数说明

在 OpenCV 内,模板匹配是使用函数 cv2.matchTemplate()实现的。该函数的语法格式为:

result = cv2.matchTemplate(image, templ, method[, mask ] )

其中:

  • image 为原始图像,必须是 8 位或者 32 位的浮点型图像。
  • templ 为模板图像。它的尺寸必须小于或等于原始图像,并且与原始图像具有同样的类
    型。
  • method 为匹配方法。该参数通过 TemplateMatchModes 实现,有 6 种可能的值,如表 15-1 所示。

opencv基础57-模板匹配cv2.matchTemplate()->(目标检测、图像识别、特征提取),opencv,计算机视觉,人工智能,opencv,目标检测,人工智能,计算机视觉,python,图像处理

  • mask 为模板图像掩模。它必须和模板图像 templ 具有相同的类型和大小。通常情况下该值使用默认值即可。当前,该参数仅支持 TM_SQDIFF 和 TM_CCORR_NORMED 两个值。

函数 cv2.matchTemplate()的返回值 result 是由每个位置的比较结果组合所构成的一个结果集,类型是单通道 32 位浮点型。如果输入图像(原始图像)尺寸是 WH,模板的尺寸是 wh,
则返回值的大小为(W-w+1)*(H-h+1)。
在进行模板匹配时,模板在原始图像内遍历。在水平方向上:
I 表示输入图像,T 表示模板,R 表示输出的结果图像,x 和 y 表示位置信息。

  • 遍历的起始坐标是原始图像左数第 1 个像素值(序号从 1 开始)。
  • 最后一次比较是当模板图像位于原始图像的最右侧时,此时其左上角像素点所在的位置是 W-w+1。
    因此,返回值 result 在水平方向上的大小是 W-w+1(水平方向上的比较次数)。

在垂直方向上:

  • 遍历的起始坐标从原始图像顶端的第 1 个像素开始。
  • 最后一次比较是当模板图像位于原始图像的最下端时,此时其左上角像素点所在位置是H-h+1。

所以,返回值 result 在垂直方向上的大小是 H-h+1(垂直方向上的比较次数)。
如果原始图像尺寸是 WH,模板的尺寸是 wh,则返回值的大小为(W-w+1)(H-h+1)。也就是说,模板图像要在输入图像内比较(W-w+1)(H-h+1)次。

太抽象了再看看下面的说明看看能不能好理解一点

例如,在图 15-2 中,左上方的 2×2 小方块是模板图像,右下方的 10×10 图像是输入图像
(原始图像)。在进行模板匹配时:

  1. 首先将模板图像置于输入图像的左上角。
  2. 模板图像在向右移动时,最远只能位于输入图像的最右侧边界处,此时模板图像左上角的像素对应着输入图像的第 9 列(输入图像宽度-模板图像宽度+1 = 10-2+1 = 9)。
  3. 模板图像在向下移动时,最远只能位于输入图像最下端的边界处。此时模板图像左上角的像素对应着输入图像的第 9 行(输入图像高度-模板图像高度+1 = 10-2+1 = 9)。
    根据上述分析可知,比较结果 result 的大小满足(W-w+1)*(H-h+1),在上例中就是(10-2+1)×(10-2+1),即 9×9。也就是说,模板图像要在输入图像内总计比较 9×9 = 81 次,这些比较结果将构成一个 9×9 大小的二维数组。

opencv基础57-模板匹配cv2.matchTemplate()->(目标检测、图像识别、特征提取),opencv,计算机视觉,人工智能,opencv,目标检测,人工智能,计算机视觉,python,图像处理
这样感觉有点懂了。

这里需要注意的是,函数 cv2.matchTemplate()通过参数 method 来决定使用不同的查找方法。对于不同的查找方法,返回值 result 具有不同的含义。

例如:

  • method 的值为 cv2.TM_SQDIFF 和 cv2.TM_SQDIFF_NORMED 时,result 值为 0 表示匹
    配度最好,值越大,表示匹配度越差。
  • method 的值为 cv2.TM_CCORR、cv2.TM_CCORR_NORMED、cv2.TM_CCOEFF 和
    cv2.TM_CCOEFF_NORMED 时,result 的值越小表示匹配度越差,值越大表示匹配度越好。

从上述分析可以看出,查找方法不同,结果的判定方式也不同。在查找最佳匹配时,首先要确定使用的是何种 method,然后再确定到底是查找最大值,还是查找最小值。

代码示例:使用函数 cv2.matchTemplate()进行模板匹配。

要求参数 method 的值设置为 cv2.TM_SQDIFF,显示函数的返回结果及匹配结果。

先到网上找个图,然后从图中再截取一部分另存为一个图。

opencv基础57-模板匹配cv2.matchTemplate()->(目标检测、图像识别、特征提取),opencv,计算机视觉,人工智能,opencv,目标检测,人工智能,计算机视觉,python,图像处理

opencv基础57-模板匹配cv2.matchTemplate()->(目标检测、图像识别、特征提取),opencv,计算机视觉,人工智能,opencv,目标检测,人工智能,计算机视觉,python,图像处理

代码如下:

import cv2

from matplotlib import pyplot as plt

img1 = cv2.imread('toukui.png')
#将图片转换为灰度图
img = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)

template1 = cv2.imread('toukui2.png')

template = cv2.cvtColor(template1,cv2.COLOR_BGR2GRAY)

th, tw = template.shape[::]
rv = cv2.matchTemplate(img,template,cv2.TM_SQDIFF)

minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)
topLeft = minLoc
bottomRight = (topLeft[0] + tw, topLeft[1] + th)
cv2.rectangle(img,topLeft, bottomRight, 255, 2)
plt.subplot(121),plt.imshow(rv,cmap = 'gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img,cmap = 'gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.show()

运行效果:

opencv基础57-模板匹配cv2.matchTemplate()->(目标检测、图像识别、特征提取),opencv,计算机视觉,人工智能,opencv,目标检测,人工智能,计算机视觉,python,图像处理
简单的目标检测效果就来了。

多模板匹配

也就是说目标检测时 出现了多个目标,在前面的例子中,我们在输入图像 中搜索其戴头盔,该子图在整个输入图像内仅出现了一次。但是,有些情况下,如果摄像头下面现在站了3个戴头盔的人,这时就需要找出多个匹配结果。而函数 cv2.minMaxLoc()仅仅能够找出最值,无法给出所有匹配区域的位置信息。所以,要想匹配多个结果,使用函数 cv2.minMaxLoc()是无法实现的,需要利用阈值进行处理。

下面分步骤介绍如何获取多模板匹配的结果。

1. 获取匹配位置的集合

函数 where()能够获取模板匹配位置的集合。对于不同的输入,其返回的值是不同的。

  • 当输入(参数)是一维数组时,返回值是一维索引,只有一组索引数组。
  • 当输入是二维数组时,返回的是匹配值的位置索引,因此会有两组索引数组表示返回值的位置。

以下代码查找在一维数组 a 中,数值大于 5 的元素的索引(即该元素所在的位置,数组的索引从 0 开始):

import numpy as np
a=np.array([3,6,8,1,2,88])
b=np.where(a>5)
print(b)

该段代码返回的结果为:

(array([1, 2, 5], dtype=int64),)

说明索引值为 1、2、5 的数组元素,它们的值是大于 5 的


上面介绍的是输入值为一维数组时的情况。

当输入值是二维数组时,函数 where()会返回满足条件的值在二维数组中的索引。

例如,以下代码查找在二维数组 am 中,值大于 5 的元素的索引:

import numpy as np
am=np.array([[3,6,8,77,66],[1,2,88,3,98],[11,2,67,5,2]])
b=np.where(am>5)
print(b)

该段代码返回的结果为:

(array([0, 0, 0, 0, 1, 1, 2, 2], dtype=int64),
array([1, 2, 3, 4, 2, 4, 0, 2], dtype=int64))

上述结果说明,存在二维数组 am,它的值为:

[[ 3 6 8 77 66]
[ 1 2 88 3 98]
[11 2 67 5 2]]

其中,位置[0, 1]、[0, 2]、[0, 3]、[0, 4]、[1, 2]、[1, 4]、[2, 0]、[2, 2]上的元素值大于 5。

综上所述,函数 np.where()可以找出在函数 cv2.matchTemplate()的返回值中,哪些位置上的值是大于阈值 threshold 的。

在具体实现时,可以采用的语句为:

loc = np.where( res >= threshold)

式中:

  • res 是函数 cv2.matchTemplate()进行模板匹配后的返回值。
  • threshold 是预设的阈值
  • loc 是满足“res >= threshold”的像素点的索引集合。例如,在上面的二维数组 am 中,返回的大于 5 的元素索引集合为(array([0, 0, 0, 0, 1, 1, 2, 2], dtype=int64), array([1, 2, 3, 4,2, 4, 0, 2], dtype=int64))。返回值 loc 中的两个元素,分别表示匹配值的行索引和列索引。

2. 循环坐标值

这个没啥看头,知道什么叫循环就行

比如要处理多个值,通常需要用到循环。
例如,有一个列表,其中的值为 71、23、16,希望将这些值逐个输出,可以这样写代码:

value = [71,23,16]
for i in value:
print('value 内的值:', i)

运行上述代码,得到的输出结果为:

value 内的值: 71
value 内的值: 23
value 内的值: 16

因此,在获取匹配值的索引集合后,可以采用如下语句遍历所有匹配的位置,对这些位置做标记:
for i in 匹配位置集合:标记匹配位置。

3. 在循环中使用函数zip()

函数 zip()用可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

例如,以下代码使用函数 zip()将 t 内对应的元素打包成一个个元组,并打印了由这些元组组成的列表:

x = [1,2,3]
y = [4,5,6]
z = [7,8,9]
t = (x,y,z)
print(t)
for i in zip(*t):
 print(i)

上述代码中,语句 print(t)将 t 内的元素输出,结果为:

([1, 2, 3], [4, 5, 6], [7, 8, 9])

循环语句 for i in zip(*t)将 t 内的元素打包成元组后输出,结果为:

(1, 4, 7)
(2, 5, 8)
(3, 6, 9)

因此,如果希望循环遍历由 np.where()返回的模板匹配索引集合,可以采用的语句为:

for i in zip(*模板匹配索引集合):标记处理

例如,对于前面提到的数组 am,使用函数 zip()循环,就可以得到其中大于 5 的元素索引
的集合:

import numpy as np
am=np.array([[3,6,8,77,66],[1,2,88,3,98],[11,2,67,5,2]])
print(am)
b=np.where(am>5)
for i in zip(*b):
 print(i)

上述代码的输出结果为:

[[ 3 6 8 77 66]
[ 1 2 88 3 98]
[11 2 67 5 2]]
(0, 1)
(0, 2)
(0, 3)
(0, 4)
(1, 2)
(1, 4)
(2, 0)
(2, 2)

4. 调整坐标

函数 numpy.where()可以获取满足条件的模板匹配位置集合,然后可以使用函数cv2.rectangle()在上述匹配位置绘制矩形来标注匹配位置
使用函数 numpy.where()在函数 cv2.matchTemplate()的输出值中查找指定值,得到的形式为“(行号,列号)”的位置索引。

但是,函数 cv2.rectangle()中用于指定顶点的参数所使用的是形
式为“(列号,行号)”的位置索引。所以,在使用函数 cv2.rectangle()绘制矩形前,要先将函数numpy.where()得到的位置索引做“行列互换”。可以使用如下语句实现 loc 内行列位置的互换:loc[::-1]
如下语句将 loc 内的两个元素交换位置:

import numpy as np
loc = ([1,2,3,4],[11,12,13,14])
print(loc)
print(loc[::-1])

其中,语句 print(loc)所对应的输出为:

([1, 2, 3, 4], [11, 12, 13, 14])

语句 print(loc[::-1])所对应的输出为:

([11, 12, 13, 14], [1, 2, 3, 4])

5. 标记匹配图像的位置

最后一步就用 函数 cv2.rectangle()可以标记匹配图像的具体位置,分别指定要标记的原始图像、对角顶点、颜色、矩形边线宽度即可。
关于矩形的对角顶点:

  • 其中的一个对角顶点 A 可以通过 for 循环语句从确定的满足条件的“匹配位置集合”内获取。
  • 另外一个对角顶点,可以通过顶点 A 的位置与模板的宽(w)和高(h)进行运算得到。

因此,标记各个匹配位置的语句为:

for i in 匹配位置集合:
 cv2.rectangle(输入图像,i, (i[0] + w, i[1] + h), 255, 2)

代码示例:使用模板匹配方式,标记在输入图像内与模板图像匹配的多个子图像。

代码如下:

import cv2
import numpy as np
img = cv2.imread('lena4.bmp',0)
template = cv2.imread('lena4Temp.bmp',0)
w, h = template.shape[::-1]
res = cv2.matchTemplate(img,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.9
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):
  cv2.rectangle(img, pt, (pt[0] + w, pt[1] + h), 255, 1)

cv2.imshow("template",template)
cv2.imshow("result1",img)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果如下:

opencv基础57-模板匹配cv2.matchTemplate()->(目标检测、图像识别、特征提取),opencv,计算机视觉,人工智能,opencv,目标检测,人工智能,计算机视觉,python,图像处理
可以看到输入图像内多个与模板图像匹配的子图被标记出来文章来源地址https://www.toymoban.com/news/detail-639946.html

到了这里,关于opencv基础57-模板匹配cv2.matchTemplate()->(目标检测、图像识别、特征提取)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • opencv基础49-图像轮廓02-矩特征cv2.moments()->(形状分析、物体检测、图像识别、匹配)

    矩特征(Moments Features)是用于图像分析和模式识别的一种特征表示方法,用来描述图像的形状、几何特征和统计信息。矩特征可以用于识别图像中的对象、检测形状以及进行图像分类等任务。 矩特征通过计算图像像素的高阶矩来提取特征。这些矩可以表示图像的中心、尺度

    2024年02月13日
    浏览(40)
  • opencv形状匹配(cv2.matchShape)

       

    2024年02月14日
    浏览(44)
  • opencv基础48-绘制图像轮廓并切割示例-cv2.drawContours()

    在 OpenCV 中,可以使用函数 cv2.drawContours()绘制图像轮廓。该函数的语法格式是: image=cv2.drawContours( image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]] ) 其中,函数的返回值为 image,表示目标图像,即绘制了边缘的原始图像。 该函数有如下参数: image:待

    2024年02月13日
    浏览(44)
  • opencv基础41-图像梯度-sobel算子详解cv2.Sobel()(边缘检测基础)

    图像梯度是用于描述图像变化率的概念。在图像处理中,梯度指的是图像中每个像素的灰度值变化速率或方向。它常用于边缘检测和图像特征提取。 一维图像的梯度表示为函数 f(x) 的导数,而在二维图像中,梯度是一个向量,包含两个分量:水平方向和垂直方向的灰度变化率

    2024年02月14日
    浏览(46)
  • OpenCv案例(十二):基于OpenCVSharp学习之模板匹配寻找距离中心位置最近的目标

    1:需求:在原图中,有多个特征点和模板图像一模一样,因此,寻找原图中中心位置最近的特征点位(模板匹配详解);原图如下所示: 模板图像:                                                                          2:现要求匹配找

    2024年01月24日
    浏览(55)
  • opencv 基础54-利用形状场景算法比较轮廓-cv2.createShapeContextDistanceExtractor()

    注意:新版本的opencv 4 已经没有这个函数 cv2.createShapeContextDistanceExtractor() 形状场景算法是一种用于比较轮廓或形状的方法。这种算法通常用于计算两个形状之间的相似性或差异性,以及找到最佳的匹配方式。 下面是一种基本的比较轮廓的流程,使用了形状场景算法: 数据准

    2024年02月13日
    浏览(32)
  • opencv基础-38 形态学操作-闭运算(先膨胀,后腐蚀)cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

    闭运算是先膨胀、后腐蚀的运算,它有助于关闭前景物体内部的小孔,或去除物体上的小黑点,还可以将不同的前景图像进行连接。 例如,在图 8-17 中,通过先膨胀后腐蚀的闭运算去除了原始图像内部的小孔(内部闭合的闭运算),其中: 左图是原始图像。 中间的图是对原

    2024年02月14日
    浏览(73)
  • 基于opencv4.5多目标/多角度与多尺度模板匹配(含源码)

    在OpenCV中有个用于模板匹配的基本函数matchTemplate(),该函数使用某模板在搜索图像中进行搜索时,只能搜索到和模板完全一样的地方,一旦在搜索图像中要搜索的区域相较于模板是旋转了、放大缩小了或者部分遮掩了就无法匹配到结果了,实际项目应用不太友好. 本文主要介绍

    2024年02月02日
    浏览(55)
  • opencv基础45-图像金字塔01-高斯金字塔cv2.pyrDown()

    图像金字塔(Image Pyramid)是一种用于多尺度图像处理和分析的技术,它通过构建一系列不同分辨率的图像,从而使得图像可以在不同尺度下进行处理和分析。图像金字塔在计算机视觉、图像处理和计算机图形学等领域中广泛应用,可以用于目标检测、特征提取、图像匹配、尺

    2024年02月13日
    浏览(43)
  • opencv 基础50-图像轮廓学习03-Hu矩函数介绍及示例-cv2.HuMoments()

    Hu 矩(Hu Moments)是由计算机视觉领域的科学家Ming-Kuei Hu于1962年提出的一种图像特征描述方法。这些矩是用于描述图像形状和几何特征的不变特征,具有平移、旋转和尺度不变性,适用于图像识别、匹配和形状分析等任务。 Ming-Kuei Hu在其论文中提出了七个用于形状描述的独特

    2024年02月13日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包