STM32--GPIO

这篇具有很好参考价值的文章主要介绍了STM32--GPIO。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

GPIO简介

GPIO(General Purpose Input Output)是通用输入/输出口的简称。它是一种可以通过软件控制的端口扩展器,常见于各种嵌入式系统和单片机中。GPIO具有以下特点和优势:

  1. 低功耗:GPIO使用的电流较小,能够在嵌入式系统中实现低功耗的控制和监视功能。
  2. 小封装:GPIO芯片通常采用小封装的设计,占据较小的空间,适用于空间有限的应用场景。
  3. 低成本:GPIO芯片的制造成本相对较低,可以降低整体系统的成本。
  4. 布线简单:GPIO的接口设计一般比较简单,连接和布线也相对容易,方便用户进行外部设备的控制和数据采集。

通过使用GPIO,我们可以将外部设备与嵌入式系统或单片机连接起来,实现与外部设备的通信、控制和数据采集功能。例如,通过配置GPIO的输入输出状态,可以实现控制LED灯的亮灭、读取按键的状态、控制电机的转动等。GPIO的灵活性使得它在各个领域中得到广泛的应用,如物联网、工业自动化、智能家居等。

GPIO的基本结构

GPIO的基本结构通常包括以下几个主要组成部分:

  1. 输入/输出引脚(IO Pins)GPIO芯片上的引脚用于连接外部设备或其他电路。这些引脚可以被配置为输入或输出模式,以实现对外部信号的读取或控制。

  2. 控制逻辑(Control Logic)控制逻辑是用来配置和控制GPIO引脚工作模式和行为的电路。它接收来自外部或内部的控制信号,并根据相应的配置将其传递给相应的GPIO引脚。

  3. 寄存器(Registers)寄存器是用来存储GPIO的配置和状态信息的特殊内存单元。通过读写寄存器中的特定位或字段,可以配置引脚的工作模式、使能或禁用某些功能,以及监控引脚的状态。

  4. 数据缓冲器(Data Buffer)数据缓冲器用于在GPIO引脚和外部设备之间传输数据。根据引脚的配置,数据缓冲器可以将输出数据驱动到外部设备,或者从外部设备读取输入数据。

  5. 驱动器(Drive)驱动器用于增强信号在引脚与寄存器之间的传输。对于一些信号来说,传输信号比较弱,通过配置驱动器,使之增强达到驱动效果。

STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
这里的GPIO连接着APB2总线;软件的编程程序将会从这里输入或输出;

下图为STM32总电路图
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO

GPIO位结构

对于STM32每个端口位来说,每个I/O端口位可以自由编程,然而必须按照32位字访问I/O端口寄存器(不允许半字或字节访问)。

下图是I/O端口位的基本结构
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
整体分为寄存器,驱动器和某个I/O引脚
上半部分是输入部分,下半部分是输出部分;

先从I/O引脚说起,这里的两个保护二极管是对输入电压的限制;上边接的是3.3V的VDD,下边接的是0V的VSS;如果接入的电压超过3.3V,那么输入的电压产生的电流将会流入VDD,避免过高的电压对电路产生伤害;如果接入的电压小于0V(相对VSS),那么电流就会从VSS的正极流向I/O引脚,从而保护电路;
所以,保护二极管将输入电压限制在了0-3.3V之间了;

接着看输入驱动器的连接电阻的部分,这里连接的是上拉电阻和下拉电阻,上拉电阻连接VDD,下拉电阻连接VSS,因此可以通过程序来控制;
如果上面导通,下面断开,就是上拉输入模式;如果下面导通,上面断开,就是下拉输入模式;如果两个都断开,就是浮空输入模式
这个上拉和下拉目的是为了提供一个默认的输入电平;对于数字信号来说,只识别高电平和低电平;倘若输入引脚没有接上外设,就不知道此时是高电平还是低电平,实际此时处于浮空输入状态吗,那么此时很容易受到外界的干扰,接上了这两个电阻后,当接上是上拉电阻,引脚悬空时可由上拉电阻来保持高电平,所以上拉默认为高电平输入模式;下拉就反过来,保持低电平状态,下拉默认为低电平输入模式,这样就能防止外界的干扰,使浮空时状态更加稳定;
还有这里是弱上拉和弱下拉,目的是为了不影响正常操作;

顺着电路看到TTL,施密特触发器,作用是对电压进行整形
执行逻辑是输入电压高于某一阈值,那么将会瞬间变为高电平;输入电压低于某一阈值,那么将会瞬间变为低电平
由于输入电压是从外界进来的,输入的数字信号不会保持一定程度的高低电平,输入信号会有所波动,所以有这个触发器就能让这些波动变为高低电平;

然后看到输入数据寄存器,通过施密特触发器处理的数字信号将会进入到寄存器,我们用程序就可以读取到寄存器中的数据

看到上方的模拟输入和复用功能输入,这里是连接片上外设的,模拟输入是ADC模拟数字信号,接在施密特触发器前,可以处理信号;复用功能输入接收的是数字量,所以接在施密特触发器之后;

接着看输出部分,数字信号可以由输出寄存器或片上外设控制;两种输出模式都会通过数据选择器接到输出控制部分;如果是输出寄存器,那么通过普通的I/O口就能进行输出;

最左边的位设置/清除寄存器,用来单独操作输出寄存器的某一位,而不影响其他位。因为这个输出寄存器有16位,且这个寄存器只能整体读写,所以通过这个设置/清除寄存器,能够设置某一位为1或0,剩下不需要的位将它们置为0/1即可;接着就会对输出寄存器对应位置的位进行传输;直接一步到位;
位设置就是将某一位设置为1,位清除就是将某一位设置为0;

接着看到两个MOS管,它是一种电子开关,通过信号来控制开关的导通和关闭,开关负责将接口接到VSS或VDD;
这里有两种模式,第一种是推挽输出模式,这个模式P-MOS和N-MOS均有效。数据寄存器输出1时那么上管导通下管关闭,输出直接接到VDD,保持高电平;数据为0时,那么上管关闭下管导通,输出直接接到VSS,保持低电平;这种模式高低电平均有较强的驱动能力,所以推挽输出也叫强输出模式
第二种是开漏输出模式,这个模式只有N-MOS有效;数据寄存器输出1时,下管断开,这时相当于输出断开,也就是高阻模式,无效;数据寄存器输出0时,下管导通,输出直接接到VSS,也就是输出低电平;也就是说,这种模式高电平没有驱动能力,低电平才有驱动能力
关闭就说明两个MOS管都关闭,输出无效;

GPIO模式

根据数据手册中列出的每个I/O端口的特定硬件特征, GPIO端口的每个位可以由软件分别配置成多种模式
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
下面给出各模式配置的电路图:

浮空/上拉/下拉输入
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO

模拟输入
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO

推挽/开漏输出
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO

复用推挽/开漏输出
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO

LED和蜂鸣器

LED:发光二极管,正向通电点亮,反向通电不亮
有源蜂鸣器:内部自带振荡源,将正负极接上直流电压即可持续发声,频率固定,(我们所使用的是有源蜂鸣器)
无源蜂鸣器:内部不带振荡源,需要控制器提供振荡脉冲才可发声,调整提供振荡脉冲的频率,可发出不同频率的声音
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
这是LED蜂鸣器连接STM32的电路图。

第一个是由电源提供连接二极管的正极,二极管负极连接STM32,通过STM32的低电平触发,二极管正向导通,STM32高电平二极管两端都为3.3V,无法使二极管导通;连接电阻是控制电流大小,还有可以调节二极管的亮度。
第三个是让二极管正极接在STM32的PA0口上,负极接地;那么只有在STM32输出高电平时,发光二极管才会正向导通;
上面介绍中,在推挽输出模式下,高低电平均有较强的驱动能力,所以两种解法均可。一般情况下,我们习惯用第一种方法,因为单片机和芯片上使用的是高电平弱驱动,低电平强驱动的规则,避免高低电平混乱

第二个是蜂鸣器电路,用到三极管驱动方案;
对于功率比较大的,直接用I/O口连接的话STM32负担较大,所以采用三极管的驱动方案;三极管左边是基极,带箭头是发射极,下面是集电极;左边的基极给低电平,三极管就会导通,通过3.3V和GND的连接,三接管就导通;基极给出高电平,三接管就会关闭,蜂鸣器无电流通过;
第四个图也是蜂鸣器电路,但操作方式与第二个正好相反;
一样的,三极管左边是基极,带箭头是发射极,下面是集电极;当基极为高电平时,三极管导通,蜂鸣器有电流;低电平时,三极管关闭,蜂鸣器无电流;
三极管的导通需要基极和发射极保持一定的电压;

LED闪烁工程及程序原码

我们要在面包板上连接好我们的电路:
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
之后就可以编写程序了。
我们首先复制工程模板,创建一个工程文件夹;然后在mian.c上操作即可;
首先需要对GPIO的I/O接口进行一定的配置;

● 输出缓冲器被激活
─ 开漏模式:输出寄存器上的’0’激活N-MOS,而输出寄存器上的’1’将端口置于高阻状态(PMOS从不被激活)。
─ 推挽模式:输出寄存器上的’0’激活N-MOS,而输出寄存器上的’1’将激活P-MOS。
● 施密特触发输入被激活
● 弱上拉和下拉电阻被禁止
● 出现在I/O脚上的数据在每个APB2时钟被采样到输入数据寄存器
● 在开漏模式时,对输入数据寄存器的读访问可得到I/O状态
● 在推挽式模式时,对输出数据寄存器的读访问得到最后一次写的值。

我们在STM32的总线路可以看出需要设置APB2外设时钟开关;
当外设时钟没有启用时,软件不能读出外设寄存器的数值,返回的数值始终是0x0。
这里我们输入RCC_APB2PeriphClockCmd函数,输入后选中该函数,点击右键,
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
选中定义,
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
这里我们可以看清这个函数的参数使用和函数的功能;
参数这里选择RCC_APB2Periph_GPIOA,ENABLE

接着就对GPIO进行模式选择和I/O端位口的选择;
在库函数中,使用的是结构体,我们需要对结构体给出一个变量,
GPIO_InitTypeDef GPIO_InitStructure
然后跟上面同意的道理,选中进入定义;
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO

对结构体成员进行赋值,也就是模式和端口位的选择;
最后就对GPIO结构体进行初始化,这样就完成GPIO的输出配置。

代码:

delay.c

#include "stm32f10x.h"

/**
  * @brief  微秒级延时
  * @param  xus 延时时长,范围:0~233015
  * @retval 无
  */
void Delay_us(uint32_t xus)
{
	SysTick->LOAD = 72 * xus;				//设置定时器重装值
	SysTick->VAL = 0x00;					//清空当前计数值
	SysTick->CTRL = 0x00000005;				//设置时钟源为HCLK,启动定时器
	while(!(SysTick->CTRL & 0x00010000));	//等待计数到0
	SysTick->CTRL = 0x00000004;				//关闭定时器
}

/**
  * @brief  毫秒级延时
  * @param  xms 延时时长,范围:0~4294967295
  * @retval 无
  */
void Delay_ms(uint32_t xms)
{
	while(xms--)
	{
		Delay_us(1000);
	}
}
 
/**
  * @brief  秒级延时
  * @param  xs 延时时长,范围:0~4294967295
  * @retval 无
  */
void Delay_s(uint32_t xs)
{
	while(xs--)
	{
		Delay_ms(1000);
	}
} 

delay.h

#ifndef __DELAY_H
#define __DELAY_H

void Delay_us(uint32_t us);
void Delay_ms(uint32_t ms);
void Delay_s(uint32_t s);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"

int main()
{
	//设置APB2外设时钟开关
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	
	//GPIO初始化的结构体 变量类型
	GPIO_InitTypeDef GPIO_InitStructure;
	//对结构体成员进行赋值
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;//推挽输出
	GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0;
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	//GPIO初始化
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	
	while(1)
	{
		//清除所选端口数据端口位,置0
		GPIO_ResetBits(GPIOA,GPIO_Pin_0);
		Delay_ms(100);
		//设置所选端口数据端口位,置1
		GPIO_SetBits(GPIOA,GPIO_Pin_0);
		Delay_ms(500);
		
		//设置或清除所选数据端位口
		GPIO_WriteBit(GPIOA,GPIO_Pin_0,Bit_RESET);
		Delay_ms(500);
		GPIO_WriteBit(GPIOA,GPIO_Pin_0,Bit_SET);
		Delay_ms(500);
		
		GPIO_WriteBit(GPIOA,GPIO_Pin_0,(BitAction)0);//强制转换为1
		Delay_ms(500);
		GPIO_WriteBit(GPIOA,GPIO_Pin_0,(BitAction)1);
		Delay_ms(500);
	
	
	}
}

接着就是在while(1)循环中让PA0口在高低电平中置换;
这里可以直接设置/清除所选数据端口位函数GPIO_SetBitsGPIO_ResetBits,也可以写入用设置或清除所选数据端口位函数GPIO_WriteBit
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO

这里的位用了枚举类型,可以运用枚举类型的定义,进行不同的切换;
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO

蜂鸣器工程和程序原码

STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO

代码

#include "stm32f10x.h"                  // Device header
#include "Delay.h"

int main()
{
	//设置APB2外设时钟开关
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
	
	//GPIO初始化的结构体 变量类型
	GPIO_InitTypeDef GPIO_InitStructure;
	//对结构体成员进行赋值
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;
	GPIO_InitStructure.GPIO_Pin=GPIO_Pin_12;
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	//GPIO初始化
	GPIO_Init(GPIOB,&GPIO_InitStructure);
	
	
	while(1)
	{
		GPIO_ResetBits(GPIOB,GPIO_Pin_12);
		Delay_ms(100);
		GPIO_SetBits(GPIOB,GPIO_Pin_12);
		Delay_ms(100);
		GPIO_ResetBits(GPIOB,GPIO_Pin_12);
		Delay_ms(100);
		GPIO_SetBits(GPIOB,GPIO_Pin_12);
		Delay_ms(700);
	}
}

传感器

传感器模块:传感器元件(光敏电阻/热敏电阻/红外接收管等)的电阻会随外界模拟量的变化而变化,电阻不好观察,再通过与定值电阻分压即可得到模拟电压输出,最后通过电压比较器进行二值化即可得到数字电压输出
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
这是传感器的电路图。
先看第三个电路图,N1就是可变电阻,随着光线、温度、等外界因素的变化而变化;R1是N1分压的定值电阻,R1与N1串联,定值电阻一端接VCC,N1一端接GND,这就构成简单的串联电路,C2是滤波电容,可以保证电路的稳定。它并不是电路的主要框架,看电路图可以先把它省略。AO就是我们模拟的电压输出;
该模块还支持数字输出,AO通过电压比较器的二值化(第一个图)将模拟电压转换为数字电压DO;
第二个图是可调值电阻,通过该电阻可以调节传感器的变化阈值;
第四个图也就是总的传感器模块图;DO连接着发光二极管,低电平时亮,高电平时不亮;
我们连接是转换为数字电压输出,所以AO引脚可以不接。

光敏传感器控制蜂鸣器工程

STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
这里对蜂鸣器和传感器分别装在一个文件中,创建完记得在三色箱子进行拓充和魔法棒的C/C++进行补充;
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO
STM32--GPIO,STM32,stm32,mongodb,嵌入式硬件,GPIO

代码

buzzer.h

#ifndef __BUZZER_H__
#define __BUZZER_H__

void Buzzer_Init();
void Buzzer_ON();
void Buzzer_OFF();
void Buzzer_Turn();

#endif

buzzer.c

#include "stm32f10x.h"                  // Device header

//Buzzer的初始化
void Buzzer_Init()
{
	//设置APB2外设时钟开关
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
	//选择结构体成员
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	//初始化结构体
	GPIO_Init(GPIOB, &GPIO_InitStructure);
	//初始化为低电平,改为高电平
	GPIO_SetBits(GPIOB, GPIO_Pin_12);
	
}

//Buzzer打开
void Buzzer_ON()
{
	GPIO_ResetBits(GPIOB, GPIO_Pin_12);
}
//Buzzer关闭
void Buzzer_OFF()
{
	GPIO_SetBits(GPIOB, GPIO_Pin_12);
}

//Buzzer执行相反的操作
void Buzzer_Turn()
{
	if(GPIO_ReadOutputDataBit(GPIOB,GPIO_Pin_12)==0)
	{
			GPIO_SetBits(GPIOB, GPIO_Pin_12);
	}
	else
	{
		GPIO_ResetBits(GPIOB, GPIO_Pin_12);
	}
}
	
	
	

LightSensor.c

#include "stm32f10x.h"                  // Device header

//传感器的初始化
void LightSensor_Init(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;//上拉输入,默认高电平
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);
}

//获取传感器的信号
uint8_t LightSensor_Get(void)
{
	return GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_13);
	//灯光较亮时,传感器的指示灯亮,输入低电平
	//灯光较暗时,传感器指示灯不亮,输入高电平
}

LightSensor.h

#ifndef __LIGHTSENSOR_H__
#define __LIGHTSENSOR_H__

void LightSensor_Init(void);
uint8_t LightSensor_Get(void);//uint8_t表示unsigned char

#endif

mian.c文章来源地址https://www.toymoban.com/news/detail-640124.html

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "Buzzer.h"
#include "LightSensor.h"

int main()
{
	LightSensor_Init();
	Buzzer_Init();
	
	while(1)
	{
	//外界较暗时,感应器输入高电平(1),蜂鸣器响起
		if(LightSensor_Get())
		{
			Buzzer_ON();
		}
	//外界较亮时,感应器输入低电平(0),蜂鸣器不响
		else
		{
			Buzzer_OFF();
		}
	}
}

到了这里,关于STM32--GPIO的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 嵌入式硬件——stm32F103C8T6

    如下图:    处理器核心:STM32F103C8T6内置了ARM Cortex-M3处理器,这是一种高性能、低功耗的32位RISC处理器,适用于嵌入式系统。 时钟速度:它可以工作在不同的时钟速度,最高主频可达72 MHz。 存储器:包括64KB的Flash程序存储器用于存储程序代码,以及20KB的SRAM用于存储数据和

    2024年02月05日
    浏览(59)
  • 嵌入式毕设分享 stm32人脸识别快递柜系统(源码+硬件+论文)

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年04月10日
    浏览(67)
  • 嵌入式毕设分享 stm32 RFID智能仓库管理系统(源码+硬件+论文)

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(67)
  • 嵌入式毕设分享 stm32智能鱼缸监控投喂系统(源码+硬件+论文)

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年03月17日
    浏览(73)
  • 【嵌入式学习笔记】嵌入式基础9——STM32启动过程

    程序段交叉引用关系(Section Cross References):描述各文件之间函数调用关系 删除映像未使用的程序段(Removing Unused input sections from the image):描述工程中未用到被删除的冗余程序段(函数/数据) 映像符号表(Image Symbol Table):描述各符号(程序段/数据)在存储器中的地址、类

    2024年02月15日
    浏览(81)
  • stm32嵌入式实验考核

    STM32 实验考核题目 1. 利用 STM32 小板实现:控制外接 LED 灯每隔 3 秒钟亮暗变换,同 时在 PC 机上显示 MCU 的计时时间,MCU 的初始时间由 PC 机 方设置。 2. 利用 STM32 小板实现:利用导线外接 GPIO 口模拟 2 个按键输入, 根据输入组合的四种情况,分别控制三色灯四种流水灯效果

    2024年02月03日
    浏览(49)
  • STM32的时钟系统(嵌入式学习)

    时钟是指用于计量和同步时间的装置或系统。时钟是嵌入式系统的脉搏,处理器内核在时钟驱动下完成指令执行,状态变换等动作,外设部件在时钟的驱动下完成各种工作,例如:串口数据的发送、AD转换、定时器计数等。因此时钟对于计算机系统是至关重要的,通常时钟系

    2024年02月16日
    浏览(47)
  • 嵌入式 STM32 通讯协议--MODBUS

    目录 一、自定义通信协议 1、协议介绍 2、网络协议 3、自定义的通信协议  二、MODBUS通信协议 1、概述 2、MODBUS帧结构  协议描述 3、MODBUS数据模型   4、MODBUS事务处理的定义 5、MODBUS功能码  6、功能码定义   7、MODBUS数据链路层 8、MODBUS地址规则  9、MODBUS帧描述 10、MODBUS两种

    2024年02月11日
    浏览(62)
  • 嵌入式——新建STM32工程(标准库)

    目录 一、初识标准库 1.CMSIS标准及库层级关系 2.库文件介绍 (1)Libraries文件夹 ①CMSIS文件夹 ②STM32F10x_Std_Periph_Driver文件夹 ③ 在用库建立一个完整的工程时,还需要添加stm32f10x_it.c、 stm32f10x_conf.h 和 system_stm32f10x.c文件 (2)Project文件夹 (3)Utilities文件夹 3.库各文件之间的关

    2024年01月23日
    浏览(53)
  • STM32串口通信详解(嵌入式学习)

    时钟信号在电子领域中是指用于同步和定时电路操作的周期性信号。它在数字系统和通信系统中起着至关重要的作用,用于协调各个组件之间的数据传输和操作。 时钟信号有以下几个重要的方面: 频率:时钟信号的频率是指单位时间内信号周期的数量。它通常以赫兹(Hz)为

    2024年02月09日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包