数据结构——空间复杂度

这篇具有很好参考价值的文章主要介绍了数据结构——空间复杂度。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数据结构——空间复杂度,数据结构,算法,排序算法
3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因
此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

上面的冒泡排序我们在上篇文章说时间复杂度是O(N^2),时间复杂度其实是O(1),这也和我们之前讲的大O渐进法差不多,我们看程序中创建变量都是常数项,所以就是O(1).

空间复杂度一定要记住一个规则就是空间是不积累的,但是时间是累积的。

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
	if (n == 0)
		return NULL;
	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}

这是斐波那契的一个迭代,所以时间复杂度就是O(N),空间复杂度也是O(N),因为我们的malloc开辟了空间。

long long Fac(size_t N)
{
	if (N == 0)
		return 1;
	return Fac(N - 1) * N;
}

这个空间复杂度可能大家都会觉的是O(2^n),但是其实是O(N),因为函数栈帧创建会销毁,有很多空间重复利用,这就是我们为什么说空间不是积累的,但是时间是积累的。
4. 常见复杂度对比
一般算法常见的复杂度如下:
数据结构——空间复杂度,数据结构,算法,排序算法
一般我们的算法后面几个不会用,太慢了。
下面给几个oj题,让大家做一做

题目一

思路1

我们可以用哈希的思想,就是先有一个数组,里面的内容都初始化-1,然后把数字是几就放到这个相应的数组当中,然后遍历一遍数组,如果是-1的话,那就是我们要找的值。

int missingNumber(int* nums, int numsSize){
        int*num=(int*)malloc(sizeof(int)*(numsSize+1));
        int i=0;
        for(i=0;i<=numsSize;i++)
        {
            num[i]=-1;
        }
        for(i=0;i<numsSize;i++)
        {
           num[nums[i]]=nums[i];
        }
        for(i=0;i<=numsSize;i++)
        {
            if(num[i]==-1)
            return i;
        }
        free(num);
        return NULL;
}

数据结构——空间复杂度,数据结构,算法,排序算法
就是这样的一个思路
数据结构——空间复杂度,数据结构,算法,排序算法
一开始写的时候一直在调那个编译错误,其实就是少了一个返回值,大家可以放到VS上调试,就像这样给一个主函数。
数据结构——空间复杂度,数据结构,算法,排序算法

#include<stdio.h>
#include<stdlib.h>
int missingNumber(int* nums, int numsSize) {
    int* num = (int*)malloc(sizeof(int) * (numsSize + 1));
    int i = 0;
    for (i = 0; i <= numsSize; i++)
    {
        num[i] = -1;
    }
    for (i = 0; i < numsSize; i++)
    {
        num[nums[i]] = nums[i];
    }
    for (i = 0; i <= numsSize; i++)
    {
        if (num[i] == -1)
            return i;
    }
    free(num);
    return NULL;
}
int main()
{
	int arr[] = { 2,3,4,0 };
    int sz = sizeof(arr) / sizeof(arr[0]);
    int ret=missingNumber(arr, sz);
    printf("%d", ret);
	return 0;
}

思路2

按位异或,这是特别快的一个思路。因为我们0和任何数异或都是本身,然后我们只要给一个0就可以了,然后因为相同的数异或是0,接下来就看我们的代码。

int missingNumber(int* nums, int numsSize){
        int x=0;
        for(int i=0;i<numsSize;i++)
        {
            x^=nums[i];
        }
        for(int i=0;i<=numsSize;i++)
        {
            x^=i;
        }
        return x;
}

其实还有思路,但是我就不写了。给个思路吧
思路三,先排序,在找,按顺序一个一个遍历,但是空间复杂度肯定不是O(N),因为排序还要时间。
思路四,加0到N的数相加,然后减去这个数组,得到的就是消失的数。

旋转数

void revolve(int*left,int*right)
{
    while(left<right)
    {
        int tmp=*left;
        *left=*right;
        *right=tmp;
        left++;
        right--;
    }
}


void rotate(int* nums, int numsSize, int k){
        if(numsSize==1)
        return ;
        k=k%numsSize;
        revolve(nums,nums+numsSize-1);
        revolve(nums,nums+k-1);
        revolve(nums+k,nums+numsSize-1);
}

数据结构——空间复杂度,数据结构,算法,排序算法
以上就是今天分享,我们下次再见文章来源地址https://www.toymoban.com/news/detail-640270.html

到了这里,关于数据结构——空间复杂度的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构与算法-时间复杂度与空间复杂度

    数据结构是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。 算法就是定义良好的计算过程,他取一个或一组的值为输入,并产生一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。 算法在

    2024年02月07日
    浏览(47)
  • 【数据结构与算法】1.时间复杂度和空间复杂度

    📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️ 🙏小杨水平有限,欢迎各位大佬指点,相互学习进步! 算法效率分为两种:第一种是时间效率;第二种是空间效率。时间效率又称为时间

    2024年01月20日
    浏览(49)
  • 【数据结构与算法篇】时间复杂度与空间复杂度

       目录 一、数据结构和算法 1.什么是数据结构?  2.什么是算法? 3.数据结构和算法的重要性 二、算法的时间复杂度和空间复杂度 1.算法效率 2.算法的复杂度 3.复杂度在校招中的考察 4.时间复杂度 5.空间复杂度  6.常见复杂度对比 7.复杂度的OJ练习   👻内容专栏:《数据结

    2023年04月24日
    浏览(60)
  • 学习数据结构:算法的时间复杂度和空间复杂度

    衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。 算法的时间复杂度 算法中的基本操作的执行次数,为算法的时间复杂度。 算法的

    2024年04月11日
    浏览(40)
  • 数据结构 | 算法的时间复杂度和空间复杂度【详解】

    数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。 算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转

    2024年02月08日
    浏览(51)
  • 【数据结构与算法篇】之时间复杂度与空间复杂度

    ❤️博客主页: 小镇敲码人 🍏 欢迎关注:👍点赞 👂🏽留言 😍收藏 🌞友友们暑假快乐,好久不见呀!!!💖💖💖 🍉 有人曾经问过我这样一个问题,“人终其一身,执着追求的东西究竟是什么?”我是这样回答的,”我们终其一生都在寻找着那个和我们灵魂极其契合

    2024年02月12日
    浏览(48)
  • 从头开始:数据结构和算法入门(时间复杂度、空间复杂度)

        目录 文章目录 前言 1.算法效率 1.1 如何衡量一个算法的好坏 1.2 算法的复杂度 2.时间复杂度  2.1 时间复杂度的概念 2.2 大O的渐进表示法 2.3常见时间复杂度计算 3.空间复杂度 4.常见复杂度对比 总结 前言         C语言的学习篇已经结束,今天开启新的篇章——数据结构

    2024年02月14日
    浏览(49)
  • 【数据结构初阶】算法的时间复杂度和空间复杂度

    1.1 如何衡量一个算法的好坏 如何衡量一个算法的好坏呢? 比如对于以下斐波那契数列: 斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢? 1.2 算法的复杂度 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此

    2024年02月08日
    浏览(71)
  • 数据结构学习之路--算法的时间复杂度与空间复杂度(精讲)

         嗨嗨大家!本期带来的内容是:算法的时间复杂度与空间复杂度。 目录 前言 一、算法效率 算法效率的衡量标准 二、时间复杂度 1 时间复杂度的定义 2 求解时间复杂度的步骤 2.1 找出算法中的基本语句:  2.2计算基本语句执行次数的数量级: 2.3大O阶的渐进表示法:

    2024年04月09日
    浏览(58)
  • 【数据结构】算法的时间复杂度和空间复杂度(含代码分析)

    如何衡量一个算法的好坏呢?比如对于以下斐波那契数列: 这里的时间复杂度为: 2^N ,计算方法请看下文。 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复

    2024年02月05日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包