基于卷积神经网络的MAE自监督方法

这篇具有很好参考价值的文章主要介绍了基于卷积神经网络的MAE自监督方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文分享自华为云社区《基于卷积神经网络的MAE自监督方法》,作者: Hint 。

图像自监督预训练算法是近年来的重要研究方向,MAE是其中基于ViT实现的代表性方法,学习到了鲁棒的视觉特征。MAE全称是Masked Autoencoders,是由何凯明提出的自监督预训练方法,借鉴了BERT的预训练任务,将输入图片的patch以较大的比例进行mask,并通过非对称的ViT编码解码器结构,进行masked patches的重建任务。该方法在性能上超过了以往的对比学习方法,如MoCo系列等。然而ViT的结构复杂,计算量庞大,基于CNN的类MAE方法具有极高研究价值,但受限于CNN的结构特性,常规的MAE方式无法直接在CNN上应用。本文介绍ICLR2023的方法Spark[1],实现了基于CNN的MAE。

如上图所示,对于一个masked的输入图片,对ViT输入和CNN的输入计算统计直方图,ViT的直方图是和未mask的图片分布一致的,而CNN的直方图发生了很大变化。这是由于ViT结构天然适合处理变长、不规则的输入,且不同的输入之间不会重叠计算。CNN的滑窗操作和规则的卷积核形状,导致模型会严重受到mask部分的影响。

因此作者借鉴了3D点云领域的稀疏卷积,该卷积只对未mask的像素进行计算,忽略masked的像素,可以处理不规则的输入,实现了和ViT类似的效果。另外,为了学习到多尺度的特征,作者设计了分层次的解码器,参考了UNet的结构设计,使模型学习到多尺度的特征,适应CNN的多层级结构。

从以下的实验结果来看,该方法的性能媲美原始的MAE方法,并在各种下游任务中取得了SOTA的结果,作者也证明了各个设计模块的有效性以及该方法的通用性。

[1]Tian K, Jiang Y, Diao Q, et al. Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked Modeling[J]. arXiv preprint arXiv:2301.03580, 2023.

 文章来源地址https://www.toymoban.com/news/detail-640326.html

点击关注,第一时间了解华为云新鲜技术~

 

到了这里,关于基于卷积神经网络的MAE自监督方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 目标检测YOLO实战应用案例100讲-基于卷积神经网络的 车辆目标检测及跟踪方法研究(续)

    目录 基于JDE算法的实时多目标车辆跟踪方法 4.1引言 4.2 JDE多目标跟踪算法

    2024年02月09日
    浏览(42)
  • 基于Transformer(卷积神经网络、循环神经网络)的情感分类研究

    Requirements: * Python: 3.8.5 * PyTorch: 1.8.0 * Transformers: 4.9.0 * NLTK: 3.5 * LTP: 4.0  Model: Attention:   论文解读参考:   https://blog.csdn.net/Magical_Bubble/article/details/89083225 实验步骤: 1)下载VSstudio2019 注意:安装时勾选“Python开发”和“C++桌面开发” 2) 下载和安装nvidia显卡驱动 下载之后

    2024年02月07日
    浏览(45)
  • 基于 Python中的深度学习:神经网络与卷积神经网络

    当下,深度学习已经成为人工智能研究和应用领域的关键技术之一。作为一个开源的高级编程语言,Python提供了丰富的工具和库,为深度学习的研究和开发提供了便利。本文将深入探究Python中的深度学习,重点聚焦于神经网络与卷积神经网络的原理和应用。 深度学习是机器学

    2024年02月07日
    浏览(53)
  • 基于GUI的卷积神经网络和长短期神经网络的语音识别系统,卷积神经网的原理,长短期神经网络的原理

    背影 卷积神经网络CNN的原理 卷积神经网络CNN的定义 卷积神经网络CNN的神经元 卷积神经网络CNN的激活函数 卷积神经网络CNN的传递函数 长短期神经网络的原理 基于GUI的卷积神经网络和长短期神经网络的语音识别系统 代码下载链接:基于MATLABGUI编程的卷积神经网络和长短期神

    2024年02月12日
    浏览(35)
  • 手写数字识别-基于卷积神经网络

    🌞欢迎来到机器学习的世界  🌈博客主页:卿云阁  💌欢迎关注🎉点赞👍收藏⭐️留言📝 🌟本文由卿云阁原创! 🌠本阶段属于练气阶段,希望各位仙友顺利完成突破 📆首发时间:🌹2021年6月5日🌹 ✉️希望可以和大家一起完成进阶之路! 🙏作者水平很有限,如果发

    2024年02月10日
    浏览(41)
  • 基于卷积神经网络的目标分类案例

    卷积神经网络(Convolutional Neural Networks, CNN 是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(

    2024年02月12日
    浏览(49)
  • 基于卷积神经网络的种子等级识别

    背影 卷积神经网络CNN的原理 卷积神经网络CNN的定义 卷积神经网络CNN的神经元 卷积神经网络CNN的激活函数 卷积神经网络CNN的传递函数 基于卷积神经网络的花生识别,基于卷积神经网络的种子识别 代码下载链接:基于卷积神经网络的花生识别,基于卷积神经网络的种子识别,

    2024年02月11日
    浏览(37)
  • 基于卷积神经网络的高光谱图像分类

    近年来深度学习的技术在计算机视觉领域中大放异彩,使得对多光谱数据分类的研究迅速发展,结合2D-CNN,3D-CNN,注意力机制,PCA降维等方法均可使得对多光谱图像的分类精度得以提升。目前CNN网络大量用于传统的CV领域,而对于高光谱图像的分类仍比较缺乏,本文章基于C

    2024年02月10日
    浏览(39)
  • MATLAB基于卷积神经网络的手势识别

    目录 1. 数据集介绍  2. 训练、保存网络 3. 手势识别 4. 识别结果 5. 总结 本实验所用数据集为从Kaggle平台下载的手语数据集(sign_mnist)中选取的部分数据。 sign_mnist 数据集格式的模式化与经典 MNIST 紧密匹配。每个训练和测试用例表示一个标签 (0-25),作为每个字母 A-Z 的一

    2024年02月06日
    浏览(105)
  • 综合实验---基于卷积神经网络的目标分类案例

    ①首先打开 cmd,创建虚拟环境。 如果报错:‘conda’ 不是内部或外部命令,也不是可运行的程序 或批处理文件。请在环境变量里添加Anconda3路径,如果没有Anconda3直接去官网下载就行了 具体步骤:我的电脑—右键属性—高级系统设置—环境变量—系统变量—Path—双击进入—新

    2024年02月13日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包