深入理解PyTorch中的NoamOpt优化器

这篇具有很好参考价值的文章主要介绍了深入理解PyTorch中的NoamOpt优化器。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

深入理解PyTorch中的NoamOpt优化器

作者:安静到无声 个人主页

今天,我们将深入探讨一个在自然语言处理领域广泛使用的优化器——NoamOpt。这个优化器是基于PyTorch实现的,并且在"Attention is All You Need"这篇论文中首次提出。

什么是NoamOpt?

NoamOpt是一种特殊的学习率调度策略,它结合了两种不同的学习率调度方法:线性预热和逆平方根调度。这种组合使得模型在训练初期可以有较大的学习率以快速收敛,而在后期通过降低学习率来微调模型参数,从而避免过拟合。

NoamOpt的工作原理

NoamOpt的核心思想是动态调整学习率。具体来说,它会在训练的初始阶段线性地增加学习率,然后在达到某个点后,开始按照步骤的逆平方根进行衰减。这种策略的数学形式如下:

lr = scale_factor * (model_dim ** -0.5) * min(step_num ** -0.5, step_num * warmup_steps ** -1.5)

其中,scale_factor是缩放因子,model_dim是模型的维度,step_num是当前的步数,warmup_steps是预热步数。

在PyTorch中实现NoamOpt

在PyTorch中,我们可以通过定义一个新的Optimizer类来实现NoamOpt。以下是一个简单的示例:

class NoamOpt:
    def __init__(self, model_size, factor, warmup, optimizer):
        self.optimizer = optimizer
        self._step = 0
        self.warmup = warmup
        self.factor = factor
        self.model_size = model_size
        self._rate = 0
        
    def step(self):
        self._step += 1
        rate = self.rate()
        for p in self.optimizer.param_groups:
            p['lr'] = rate
        self._rate = rate
        self.optimizer.step()
        
    def rate(self, step = None):
        if step is None:
            step = self._step
        return self.factor * (self.model_size ** (-0.5) *
                              min(step ** (-0.5), step * self.warmup ** (-1.5)))

在这个类中,step()函数用于更新学习率并执行优化步骤,rate()函数则用于计算当前步骤的学习率。

结论

NoamOpt优化器是一种强大的学习率调度策略,尤其在处理Transformer模型时表现出色。通过适当地调整学习率,我们可以更有效地训练模型,同时避免过拟合。希望这篇文章能帮助你更好地理解NoamOpt优化器,以及如何在PyTorch中实现它。

推荐专栏

🔥 手把手实现Image captioning

💯CNN模型压缩

💖模式识别与人工智能(程序与算法)

🔥FPGA—Verilog与Hls学习与实践

💯基于Pytorch的自然语言处理入门与实践文章来源地址https://www.toymoban.com/news/detail-640598.html

到了这里,关于深入理解PyTorch中的NoamOpt优化器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深入剖析PyTorch和TensorFlow:理解二者的区别与联系

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 (封面图由文心一格生成) 深度学习框架在近年来的快速发展中发挥了至关

    2024年02月05日
    浏览(43)
  • Pytorch中的forward的理解

    0. 前言 按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。 1. 关于forward的两个小问题 1.1 为什么都用def forward,而不改个名字? 在Pytorch建立神经元网络模型的

    2023年04月08日
    浏览(29)
  • 关于pytorch中的dim的理解

    今天碰到一个代码看起来很简单,但是细究原理又感觉好像不太通不太对劲,就是多维tensor数据的操作,比如: y.sum(dim=2) ,乍一看很简单数据相加操作,但是仔细一想,这里在第3维度的数据到底是横向相加还是纵向相加,带着疑问实验几次就明白了。 首先给个完整的例子:

    2024年02月04日
    浏览(32)
  • nn.Dropout、DropPath的理解与pytorch代码

    ​在vit的代码中看到了DropPath,想知道DropPath与nn.Dropout()有什么区别,于是查阅相关资料记录一下。 ​dropout是最早的用于解决过拟合的方法,是所有drop类方法的大前辈。dropout在12年被Hinton提出,并且在《ImageNet Classification with Deep Convolutional Neural Network》工作AlexNet中使用到了

    2024年02月14日
    浏览(29)
  • PyTorch中的优化器探秘:加速模型训练的关键武器

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 (封面图由文心一格生成) 在机器学习和深度学习中,优化器是训练模型不

    2024年02月02日
    浏览(74)
  • pytorch实战-图像分类(二)(模型训练及验证)(基于迁移学习(理解+代码))

    目录 1.迁移学习概念 2.数据预处理  3.训练模型(基于迁移学习) 3.1选择网络,这里用resnet 3.2如果用GPU训练,需要加入以下代码 3.3卷积层冻结模块 3.4加载resnet152模 3.5解释initialize_model函数 3.6迁移学习网络搭建 3.7优化器 3.8训练模块(可以理解为主函数) 3.9开始训练 3.10微调

    2024年02月14日
    浏览(44)
  • 深入理解WPF中的Dispatcher:优化UI操作的关键

      概述: Dispatcher是WPF中用于协调UI线程和非UI线程操作的关键类,通过消息循环机制确保UI元素的安全更新。常见用途包括异步任务中的UI更新和定时器操作。在实践中,需注意避免UI线程阻塞、死锁,并使用CheckAccess方法确保在正确的线程上执行操作。这有助于提升应用程序

    2024年02月04日
    浏览(40)
  • Pytorch代码入门学习之分类任务(三):定义损失函数与优化器

    目录 一、定义损失函数 1.1 代码 1.2 损失函数简介 1.3 交叉熵误差(cross entropy error) 二、定义优化器 2.1 代码 2.2 构造优化器 2.3 随机梯度下降法(SGD)         神经网络的学习通过某个指标表示目前的状态,然后以这个指标为基准,寻找最优的权重参数。神经网络以某个指标

    2024年02月07日
    浏览(41)
  • 深入理解FPGA(Cortex-M0片上系统Soc搭载及代码编写调试)

    深入理解 FPGA FPGA到底是什么,FPGA其实本身只是一个个孤立开来的器件或者模块,没有任何的联系,我们可以通过FPGA工具,例如Quartus、TD导入芯片的资料,这样就会有芯片的管脚图和一些IP核,这些IP核分为Primitive Core和Soft Core。Primitive Core就是硬核,例如SDRAM,ADC等,这是不需

    2024年04月26日
    浏览(26)
  • 【Pytorch】进阶学习:深入解析 sklearn.metrics 中的 classification_report 函数---分类性能评估的利器

    【Pytorch】进阶学习:深入解析 sklearn.metrics 中的 classification_report 函数—分类性能评估的利器 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~ 💡 创作高质量博文

    2024年03月11日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包