使用 prometheus client SDK 暴露指标

这篇具有很好参考价值的文章主要介绍了使用 prometheus client SDK 暴露指标。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 使用 prometheus client SDK 暴露指标

1.1. How Go exposition works

To expose Prometheus metrics in a Go application, you need to provide a /metrics HTTP endpoint. You can use the prometheus/promhttp library’s HTTP Handler as the handler function.

This minimal application, for example, would expose the default metrics for Go applications via http://localhost:2112/metrics:

package main

import (
        "net/http"

        "github.com/prometheus/client_golang/prometheus/promhttp"
)

func main() {
        http.Handle("/metrics", promhttp.Handler())
        http.ListenAndServe(":2112", nil)
}

To start the application:

go run main.go

To access the metrics:

curl http://localhost:2112/metrics

1.2. Adding your own metrics

The application above exposes only the default Go metrics. You can also register your own custom application-specific metrics. This example application exposes a myapp_processed_ops_total counter that counts the number of operations that have been processed thus far. Every 2 seconds, the counter is incremented by one.

package main

import (
        "net/http"
        "time"

        "github.com/prometheus/client_golang/prometheus"
        "github.com/prometheus/client_golang/prometheus/promauto"
        "github.com/prometheus/client_golang/prometheus/promhttp"
)

func recordMetrics() {
        go func() {
                for {
                        opsProcessed.Inc()
                        time.Sleep(2 * time.Second)
                }
        }()
}

var (
        opsProcessed = promauto.NewCounter(prometheus.CounterOpts{
                Name: "myapp_processed_ops_total",
                Help: "The total number of processed events",
        })
)

func main() {
        recordMetrics()

        http.Handle("/metrics", promhttp.Handler())
        http.ListenAndServe(":2112", nil)
}

In the metrics output, you’ll see the help text, type information, and current value of the myapp_processed_ops_total counter:

# HELP myapp_processed_ops_total The total number of processed events
# TYPE myapp_processed_ops_total counter
myapp_processed_ops_total 5

You can configure a locally running Prometheus instance to scrape metrics from the application. Here’s an example prometheus.yml configuration:

scrape_configs:
- job_name: myapp
  scrape_interval: 10s
  static_configs:
  - targets:
    - localhost:2112

1.3. Other Go client features

In this guide we covered just a small handful of features available in the Prometheus Go client libraries. You can also expose other metrics types, such as gauges and histograms, non-global registries, functions for pushing metrics to Prometheus PushGateways, bridging Prometheus and Graphite, and more.

2. Golang Application monitoring using Prometheus

In this article, you will learn the basics of Prometheus including what metrics are, the different types of metrics and when they are used. After that, you will expose metrics of a Golang application and visualize them using Grafana.

To ensure our applications’ quality, some kind of quality monitoring and quality checks need to be executed. These quality checks often compare a given metric captured from the application e.g. throughput or error rate, with some defined value e.g. error rate < 0,1%.

Prometheus is an open source monitoring and alerting tool that helps us to collect and expose these metrics from our application in an easy and reliable way.

In this article, you will learn the basics of Prometheus including what metrics are, the different types of metrics and when they are used. After that, you will expose metrics of a Golang application and visualize them using Grafana.

2.1. Metrics and Labels

Simply put, metrics measure a particular value e.g. the response time of your application over time. Once the metrics are exposed from the application using some kind of instrumented system Prometheus stores them in a time-series database and makes them promptly available using queries.

# Total number of HTTP request
http_requests_total

# Response status of HTTP request
response_status

# Duration of HTTP requests in seconds
http_response_time_seconds

If you have more than one service for a specific metric you can add a label to specify which service the metric is from. For example, you could add a service label to the http_requests_total metric to differentiate between each service’s request. Another useful metric would be the URL of the different response statuses:

# Total number of HTTP request
http_requests_total{service="builder"}

# Response status of HTTP request
response_status{path="/"}
response_status{path="/articles"}

Augmenting metrics with the correct labels will make it easy to query them, especially when you have many different services.

2.2. Metrics Types

Prometheus provides four different metric types each with their advantages and disadvantages that make them useful for different use-cases. In this part of the article we are going to take a close look at all four of them.

2.2.1. Counters:

Counters are a simple metric type that can only be incremented or be reset to zero on restart. It is often used to count primitive data like the total number of requests to a services or number of tasks completed. Most counters are therefore named using the _total suffix e.g. http_requests_total.

# Total number of HTTP request
http_requests_total

# Total number of completed jobs
jobs_completed_total

The absolute value of these counters is often irrelevant and does not give you much information about the applications state. The real information can be gathered by their evolution over time which can be obtained using the rate() function.

2.2.2. Gauges:

Gauges also represent a single numerical value but different to counters the value can go up as well as down. Therefore gauges are often used for measured values like temperature, humidy or current memory usage.

Unlike with counters the current value of a gauge is meaningful and can be directly used in graphs and tests.

2.2.3. Histograms:

Histograms are used to measure the frequency of value observations that fall into specific predefined buckets. This means that they will provide information about the distribution of a metric like response time and signal outliers.

By default Prometheus provides the following buckets: .005, .01, .025, .05, .075, .1, .25, .5, .75, 1, 2.5, 5, 7.5, 10. These buckets are not suitable for every measurement and can therefore easily be changed.

2.2.4. Summaries

Summaries are very similar to Histograms because they both expose the distribution of a given data set. The one major difference is that a Histogram estimate quantiles on the Prometheus server while Summaries are calculated on the client side.

Summaries are more accurate for some pre-defined quantiles but can be a lot more resource expensive because of the client-side calculations. That is why it is recommended to use Histograms for most use-cases.

2.3. Setting Up Our Go Project

Before we can use Prometheus, we first need to build a simple application to expose some basic metrics. For this, we will build a simple Golang HTTP server that serves a static HTML and CSS file when accessing localhost:9000.

Let’s start by creating the files needed for the project. This can be done using the following commands:

mkdir static
touch main.go Dockerfile static/index.html

The HTTP server is written using Mux and will serve the static directory containing the HTML and CSS file you created above.

package main

import (
	"fmt"
	"github.com/gorilla/mux"
	"log"
	"net/http"
)


func main() {
	router := mux.NewRouter()

	// Serving static files
	router.PathPrefix("/").Handler(http.FileServer(http.Dir("./static/")))

	fmt.Println("Serving requests on port 9000")
	err := http.ListenAndServe(":9000", router)
	log.Fatal(err)
}

The HTML file will only contain an H1 tag with “Hello World!” as its content and import a CSS file.

<html>
<head>
    <title>Hello server</title>
    <link rel="stylesheet" href="style.css"/>
</head>
<body>
<div>
  <h1>Hello World!</h1>
</div>
</body>
</html>

2.4. Adding metrics to the application

Now that the application’s basic functionality is finished, we can start exposing metrics that Prometheus will later scrape. The official Golang Prometheus library automatically exposes some build-in metrics and simply needs to be imported and added to the HTTP server.

package main

import (
	"fmt"
	"github.com/gorilla/mux"
	"log"
	"net/http"
    "github.com/prometheus/client_golang/prometheus/promhttp"
)


func main() {
	router := mux.NewRouter()

	// Serving static files
	router.PathPrefix("/").Handler(http.FileServer(http.Dir("./static/")))
    
   	// Prometheus endpoint
	router.Path("/prometheus").Handler(promhttp.Handler())

	fmt.Println("Serving requests on port 9000")
	err := http.ListenAndServe(":9000", router)
	log.Fatal(err)
}

Now that we have added the Prometheus library and exposed the handler on /prometheus we can see the metrics by starting the application and navigating to localhost:9000/prometheus. The output should look similar to this:

# HELP go_gc_duration_seconds A summary of the pause duration of garbage collection cycles.
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 2.07e-05
go_gc_duration_seconds{quantile="0.25"} 7.89e-05
go_gc_duration_seconds{quantile="0.5"} 0.000137
go_gc_duration_seconds{quantile="0.75"} 0.0001781
go_gc_duration_seconds{quantile="1"} 0.0002197
go_gc_duration_seconds_sum 0.0071928
go_gc_duration_seconds_count 56
# HELP go_goroutines Number of goroutines that currently exist.
# TYPE go_goroutines gauge
go_goroutines 8
# HELP go_info Information about the Go environment.
# TYPE go_info gauge
go_info{version="go1.15"} 1
# HELP go_memstats_alloc_bytes Number of bytes allocated and still in use.
# TYPE go_memstats_alloc_bytes gauge
go_memstats_alloc_bytes 4.266136e+06
# HELP go_memstats_alloc_bytes_total Total number of bytes allocated, even if freed.
# TYPE go_memstats_alloc_bytes_total counter
go_memstats_alloc_bytes_total 1.17390144e+08
# HELP go_memstats_buck_hash_sys_bytes Number of bytes used by the profiling bucket hash table.
# TYPE go_memstats_buck_hash_sys_bytes gauge
go_memstats_buck_hash_sys_bytes 1.456289e+06
# HELP go_memstats_frees_total Total number of frees.
# TYPE go_memstats_frees_total counter
go_memstats_frees_total 435596
# HELP go_memstats_gc_cpu_fraction The fraction of this program's available CPU time used by the GC since the program started.
# TYPE go_memstats_gc_cpu_fraction gauge
go_memstats_gc_cpu_fraction 1.5705717722141224e-06
# HELP go_memstats_gc_sys_bytes Number of bytes used for garbage collection system metadata.
# TYPE go_memstats_gc_sys_bytes gauge
go_memstats_gc_sys_bytes 4.903096e+06
# HELP go_memstats_heap_alloc_bytes Number of heap bytes allocated and still in use.
# TYPE go_memstats_heap_alloc_bytes gauge
go_memstats_heap_alloc_bytes 4.266136e+06
# HELP go_memstats_heap_idle_bytes Number of heap bytes waiting to be used.
# TYPE go_memstats_heap_idle_bytes gauge
go_memstats_heap_idle_bytes 6.1046784e+07
# HELP go_memstats_heap_inuse_bytes Number of heap bytes that are in use.
# TYPE go_memstats_heap_inuse_bytes gauge
go_memstats_heap_inuse_bytes 5.210112e+06
# HELP go_memstats_heap_objects Number of allocated objects.
# TYPE go_memstats_heap_objects gauge
go_memstats_heap_objects 17572
# HELP go_memstats_heap_released_bytes Number of heap bytes released to OS.
# TYPE go_memstats_heap_released_bytes gauge
go_memstats_heap_released_bytes 6.0588032e+07
# HELP go_memstats_heap_sys_bytes Number of heap bytes obtained from system.
# TYPE go_memstats_heap_sys_bytes gauge
go_memstats_heap_sys_bytes 6.6256896e+07
# HELP go_memstats_last_gc_time_seconds Number of seconds since 1970 of last garbage collection.
# TYPE go_memstats_last_gc_time_seconds gauge
go_memstats_last_gc_time_seconds 1.61550102568985e+09
# HELP go_memstats_lookups_total Total number of pointer lookups.
# TYPE go_memstats_lookups_total counter
go_memstats_lookups_total 0
# HELP go_memstats_mallocs_total Total number of mallocs.
# TYPE go_memstats_mallocs_total counter
go_memstats_mallocs_total 453168
# HELP go_memstats_mcache_inuse_bytes Number of bytes in use by mcache structures.
# TYPE go_memstats_mcache_inuse_bytes gauge
go_memstats_mcache_inuse_bytes 27776
# HELP go_memstats_mcache_sys_bytes Number of bytes used for mcache structures obtained from system.
# TYPE go_memstats_mcache_sys_bytes gauge
go_memstats_mcache_sys_bytes 32768
# HELP go_memstats_mspan_inuse_bytes Number of bytes in use by mspan structures.
# TYPE go_memstats_mspan_inuse_bytes gauge
go_memstats_mspan_inuse_bytes 141576
# HELP go_memstats_mspan_sys_bytes Number of bytes used for mspan structures obtained from system.
# TYPE go_memstats_mspan_sys_bytes gauge
go_memstats_mspan_sys_bytes 147456
# HELP go_memstats_next_gc_bytes Number of heap bytes when next garbage collection will take place.
# TYPE go_memstats_next_gc_bytes gauge
go_memstats_next_gc_bytes 6.42088e+06
# HELP go_memstats_other_sys_bytes Number of bytes used for other system allocations.
# TYPE go_memstats_other_sys_bytes gauge
go_memstats_other_sys_bytes 1.931943e+06
# HELP go_memstats_stack_inuse_bytes Number of bytes in use by the stack allocator.
# TYPE go_memstats_stack_inuse_bytes gauge
go_memstats_stack_inuse_bytes 851968
# HELP go_memstats_stack_sys_bytes Number of bytes obtained from system for stack allocator.
# TYPE go_memstats_stack_sys_bytes gauge
go_memstats_stack_sys_bytes 851968
# HELP go_memstats_sys_bytes Number of bytes obtained from system.
# TYPE go_memstats_sys_bytes gauge
go_memstats_sys_bytes 7.5580416e+07
# HELP go_threads Number of OS threads created.
# TYPE go_threads gauge
go_threads 13
# HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.
# TYPE process_cpu_seconds_total counter
process_cpu_seconds_total 1.83
# HELP process_max_fds Maximum number of open file descriptors.
# TYPE process_max_fds gauge
process_max_fds 1.048576e+06
# HELP process_open_fds Number of open file descriptors.
# TYPE process_open_fds gauge
process_open_fds 10
# HELP process_resident_memory_bytes Resident memory size in bytes.
# TYPE process_resident_memory_bytes gauge
process_resident_memory_bytes 2.8770304e+07
# HELP process_start_time_seconds Start time of the process since unix epoch in seconds.
# TYPE process_start_time_seconds gauge
process_start_time_seconds 1.61549436213e+09
# HELP process_virtual_memory_bytes Virtual memory size in bytes.
# TYPE process_virtual_memory_bytes gauge
process_virtual_memory_bytes 1.564209152e+09
# HELP process_virtual_memory_max_bytes Maximum amount of virtual memory available in bytes.
# TYPE process_virtual_memory_max_bytes gauge
process_virtual_memory_max_bytes -1
# HELP promhttp_metric_handler_requests_in_flight Current number of scrapes being served.
# TYPE promhttp_metric_handler_requests_in_flight gauge
promhttp_metric_handler_requests_in_flight 1
# HELP promhttp_metric_handler_requests_total Total number of scrapes by HTTP status code.
# TYPE promhttp_metric_handler_requests_total counter
promhttp_metric_handler_requests_total{code="200"} 447
promhttp_metric_handler_requests_total{code="500"} 0
promhttp_metric_handler_requests_total{code="503"} 0

These metrics are great, but they are not very useful most of the time. Instead of low-level metrics, we now want to expose custom metrics that will expose our application’s internal information that we can later visualize or use in tests or health checks.

Let’s start with a rather basic metric: the total number of HTTP requests made to the server represented in a counter.

package main

import (
	"fmt"
	"github.com/gorilla/mux"
	"github.com/prometheus/client_golang/prometheus"
	"github.com/prometheus/client_golang/prometheus/promauto"
	"github.com/prometheus/client_golang/prometheus/promhttp"
	"log"
	"net/http"
	"strconv"
)

var totalRequests = prometheus.NewCounterVec(
	prometheus.CounterOpts{
		Name: "http_requests_total",
		Help: "Number of get requests.",
	},
	[]string{"path"},
)

func prometheusMiddleware(next http.Handler) http.Handler {
	return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
		rw := NewResponseWriter(w)
		next.ServeHTTP(rw, r)

		totalRequests.WithLabelValues(path).Inc()
	})
}

func init() {
	prometheus.Register(totalRequests)
}

func main() {
	router := mux.NewRouter()
	router.Use(prometheusMiddleware)

	// Prometheus endpoint
	router.Path("/prometheus").Handler(promhttp.Handler())

	// Serving static files
	router.PathPrefix("/").Handler(http.FileServer(http.Dir("./static/")))

	fmt.Println("Serving requests on port 9000")
	err := http.ListenAndServe(":9000", router)
	log.Fatal(err)
}

Let’s break the code changes down for better understanding:

  • The metric needs to be created using the prometheus package. The NewCounterVec() method is used to create a new counter metric.
  • To expose the created metric in the HTTP handler we must register the metric to Prometheus using the register() method.
  • Lastly, we need to implement the functionality of the metric in our code. Here we created and registered a new HTTP middleware that runs every time the server receives an HTTP request and increases the metric counter using the Inc() method.

The following code block contains two more metrics with different metric types: response_status and response_time perspectively.

package main

import (
	"fmt"
	"github.com/gorilla/mux"
	"github.com/prometheus/client_golang/prometheus"
	"github.com/prometheus/client_golang/prometheus/promauto"
	"github.com/prometheus/client_golang/prometheus/promhttp"
	"log"
	"net/http"
	"strconv"
)

type responseWriter struct {
	http.ResponseWriter
	statusCode int
}

func NewResponseWriter(w http.ResponseWriter) *responseWriter {
	return &responseWriter{w, http.StatusOK}
}

func (rw *responseWriter) WriteHeader(code int) {
	rw.statusCode = code
	rw.ResponseWriter.WriteHeader(code)
}

var totalRequests = prometheus.NewCounterVec(
	prometheus.CounterOpts{
		Name: "http_requests_total",
		Help: "Number of get requests.",
	},
	[]string{"path"},
)

var responseStatus = prometheus.NewCounterVec(
	prometheus.CounterOpts{
		Name: "response_status",
		Help: "Status of HTTP response",
	},
	[]string{"status"},
)

var httpDuration = promauto.NewHistogramVec(prometheus.HistogramOpts{
	Name: "http_response_time_seconds",
	Help: "Duration of HTTP requests.",
}, []string{"path"})

func prometheusMiddleware(next http.Handler) http.Handler {
	return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
		route := mux.CurrentRoute(r)
		path, _ := route.GetPathTemplate()

		timer := prometheus.NewTimer(httpDuration.WithLabelValues(path))
		rw := NewResponseWriter(w)
		next.ServeHTTP(rw, r)

		statusCode := rw.statusCode

		responseStatus.WithLabelValues(strconv.Itoa(statusCode)).Inc()
		totalRequests.WithLabelValues(path).Inc()

		timer.ObserveDuration()
	})
}

func init() {
	prometheus.Register(totalRequests)
	prometheus.Register(responseStatus)
	prometheus.Register(httpDuration)
}

func main() {
	router := mux.NewRouter()
	router.Use(prometheusMiddleware)

	// Prometheus endpoint
	router.Path("/prometheus").Handler(promhttp.Handler())

	// Serving static files
	router.PathPrefix("/").Handler(http.FileServer(http.Dir("./static/")))

	fmt.Println("Serving requests on port 9000")
	err := http.ListenAndServe(":9000", router)
	log.Fatal(err)
}

2.5. Dockerizing the application

Now that the metrics are implemented in the application we can Dockerize the application to make running it with Prometheus easier.

FROM golang:1.15.0

# Set the Current Working Directory inside the container
WORKDIR /app

RUN export GO111MODULE=on

# Copy go mod and sum files
COPY go.mod go.sum ./

# Download all dependencies. Dependencies will be cached if the go.mod and go.sum files are not changed
RUN go mod download

COPY . .

# Build the application
RUN go build -o main .

# Expose port 9000 to the outside world
EXPOSE 9000

# Command to run the executable
CMD ["./main"]

The Dockerfile will download the dependencies, copy all files and build the application. After completing the Dockerfile, we can put the container and Prometheus into a Docker-Compose file.

version: '3.1'

services:
  golang:
    build:
      context: ./
      dockerfile: Dockerfile
    container_name: golang
    restart: always
    ports:
      - '9000:9000'
  prometheus:
    image: prom/prometheus:v2.24.0
    volumes:
      - ./prometheus/:/etc/prometheus/
      - prometheus_data:/prometheus
    command:
      - '--config.file=/etc/prometheus/prometheus.yml'
      - '--storage.tsdb.path=/prometheus'
      - '--web.console.libraries=/usr/share/prometheus/console_libraries'
      - '--web.console.templates=/usr/share/prometheus/consoles'
    ports:
      - 9090:9090
    restart: always

volumes:
  prometheus_data:

The only thing that we need to do now before starting the applications is configuring the Prometheus endpoint. For that, we are going to create a configuration file:

mkdir prometheus
touch prometheus/prometheus.yml

Here we define the URL of the page that Prometheus should scrape the data from, which equals to ContainerIP:Port/prometheus for our application.

global:
  scrape_interval:     15s
  evaluation_interval: 15s

scrape_configs:
  - job_name: prometheus
    static_configs:
      - targets: ['localhost:9090']
  - job_name: golang 
    metrics_path: /prometheus
    static_configs:
      - targets:
        - golang:9000

After adding the configuration we can start the application using docker-compose:

docker-compose up -d

Now we can access Prometheus by visiting localhost:9090 in our browser.

2.6. Visualizing metrics using Grafana

Now that Prometheus successfully collects the metrics, you’ll continue by visualizing the data using Grafana. For that, you’ll need to first start it by adding a Grafana container to your docker-compose file.

version: '3.1'

services:
  grafana:
    image: grafana/grafana:latest
    container_name: grafana
    ports:
      - "3000:3000"
    volumes:
      - grafana-storage:/var/lib/grafana
  golang:
    build:
      context: ./
      dockerfile: Dockerfile
    container_name: golang
    restart: always
    ports:
      - '9000:9000'
  prometheus:
    image: prom/prometheus:v2.24.0
    volumes:
      - ./prometheus/:/etc/prometheus/
      - prometheus_data:/prometheus
    command:
      - '--config.file=/etc/prometheus/prometheus.yml'
      - '--storage.tsdb.path=/prometheus'
      - '--web.console.libraries=/usr/share/prometheus/console_libraries'
      - '--web.console.templates=/usr/share/prometheus/consoles'
    ports:
      - 9090:9090
    restart: always

volumes:
  grafana-storage:
  prometheus_data:

After adding the Grafana container and a volume that will save the Grafana configurations and data you can restart docker-compose.

docker-compose up -d

Now that Grafana is started you can access it by visiting http://localhost:3000 in your browser. It will ask you to enter user credentials which defaults are admin as a username and password.

After logging in, you can create a new data source by navigating to Configuration>Data Source and clicking “Add data source”. After that, select Prometheus and then fill in the necessary information.

Once the data source has been successfully added, you can continue by creating a new dashboard to visualize your metrics.

The dashboard consists of panels that let you visualize metrics, so click “Add panel” to start.

Now you can select a metric by specifying it in the metric field: e.g. http_requests_total.

Your dashboard might not display as much data as mine since you have not accessed the application that often. The best way to get more data for testing is using a load testing tool.

I enjoy using the hey load testing tool, an open-source CLI application for load generation, but you can also use other tools. Once you downloaded hey you can generate traffic using the following command.

hey -z 5m -q 5 -m GET -H "Accept: text/html" http://127.0.0.1:9000

You can now experiment with the dashboard by adding other panels with metrics and customize it to your liking. If you want an example dashboard that visualizes all the metrics we have implemented, you can download it from Github and then import it.文章来源地址https://www.toymoban.com/news/detail-640801.html

到了这里,关于使用 prometheus client SDK 暴露指标的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Kubernetes 笔记(17)— 系统监控、使用Metrics Server、hpa 自动伸缩 Pod 数量、Prometheus 的使用

    如果你对 Linux 系统有所了解的话,也许知道有一个命令 top 能够实时显示当前系统的 CPU 和内存利用率,它是性能分析和调优的基本工具,非常有用。 Kubernetes 也提供了类似的命令,就是 kubectl top ,不过默认情况下这个命令不会生效,必须要安装一个插件 Metrics Server 才可以。

    2024年02月01日
    浏览(41)
  • 统一观测丨使用 Prometheus 监控 SNMP,我们该关注哪些指标?

    简单网络管理协议SNMP(Simple Network Management Protocol)用于网络设备的管理。网络设备种类多种多样、不同厂商提供的管理接口(如命令行接口)又不相同,这使得网络管理变得愈发复杂。为解决这一问题,SNMP应运而生。SNMP作为广泛应用于TCP/IP网络的标准网络管理协议,提供了

    2024年01月24日
    浏览(36)
  • 统一观测丨使用 Prometheus 监控云原生网关,我们该关注哪些指标?

    可观测体系的概念由来已有,随着分布式微服务迅猛发展,对可观测体系的依赖也越来越深,可观测体系通常包括 Metrics、Tracing、Logging 三类数据,再外加报警机制,即可构成完整的监控报警机制,业界对可观测也有系统性说明,如下: 回到我们日常问题排查,基本路径大致

    2024年02月09日
    浏览(44)
  • Kubernetes核心指标监控——Metrics Server详解

    从Kubernetes v1.8 开始,资源使用情况的监控可以通过 Metrics API的形式获取,例如容器CPU和内存使用率。这些度量可以由用户直接访问(例如,通过使用kubectl top命令),或者由集群中的控制器(例如,Horizontal Pod Autoscaler)使用来进行决策,具体的组件为Metrics Server,用来替换之

    2024年01月18日
    浏览(63)
  • 【Golang】golang使用三方SDK操作容器指南

    大家好 我是寸铁👊 总结了一篇 golang使用三方SDK操作容器✨ 喜欢的小伙伴可以点点关注 💝 这应该是目前全网最全golang使用三方SDK操作容器的指南了✌️ 主要是创建容器的配置信息,常用的字段 使用包如下: 配置创建Docker 容器的结构体,具体字段的含义和用途如下: 1.

    2024年04月11日
    浏览(40)
  • 为Azure Cognitive Services创建一个metric指标监控

    监控指标 In the Azure portal, in the page for your cognitive services resource, select  Metrics  (in the  Monitoring  section). If there is no existing chart, select  + New chart . Then in the  Metric   list, review the possible metrics you can visualize and select  Total Calls . In the  Aggregation   list, select  Count . This will enable you

    2024年02月09日
    浏览(35)
  • java prometheus 自定义exporter开发,以及实现多个接口返回metrics

      exporter的作用是采集需要监控的数据,并将采集到的数据转换成prometheus所需要的数据格式,将这些转换后的数据返回,供给prometheus 使用。 java 编写自定义exporter所需要的pom.xml: exporter的四类指标说明 数据类型 解释 Counter Counter类型代表一种样本数据单调递增的指标,即

    2023年04月08日
    浏览(58)
  • 云原生之深入解析如何在K8S环境中使用Prometheus来监控CoreDNS指标

    CoreDNS 是 Kubernetes 环境的DNS add-on 组件,它是在控制平面节点中运行的组件之一,使其正常运行和响应是 Kubernetes 集群正常运行的关键。 DNS 是每个体系结构中最敏感和最重要的服务之一。应用程序、微服务、服务、主机……如今,万物互联,并不一定意味着只用于内部服务,

    2024年02月03日
    浏览(51)
  • jmeter压测学习-监听器之服务器性能指标监控(PerfMon Metrics Collector)

    1.官网下载插件的jar包 Plugins Manager下载地址:Install :: JMeter-Plugins.org 2. 将下载的jar包复制到 %JMETER_HOME%libext 目录下 3. 启动 JMeter -- Options -- Plugins Manager 。(如果没将jar包放在ext目录下是没有该选项的) 4. Custom Thread Groups 插件 Custom Thread Groups插件包含Stepping Thread Group、Ultimate

    2024年04月15日
    浏览(35)
  • k8s v1.27.4 部署metrics-serverv:0.6.4,kube-prometheus

    只有一个问题,原来的httpGet存活、就绪检测一直不通过,于是改为tcpSocket后pod正常。 修改后的yaml文件,镜像修改为阿里云 部署kube-prometheus 兼容1.27的为main分支 只克隆main分支 处理: 修改prometheus-clusterRole.yaml 使用ServiceMonitor添加监控: 以ingress-nginx为例 修改ingress-nginx.yaml的

    2024年02月12日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包