机器学习——卷积神经网络基础

这篇具有很好参考价值的文章主要介绍了机器学习——卷积神经网络基础。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

卷积神经网络(Convolutional Neural Network:CNN)

卷积神经网络是人工神经网络的一种,是一种前馈神经网络。最早提出时的灵感来源于人类的神经元。

通俗来讲,其主要的操作就是:接受输入层的输入信息,通过卷积层,激活层,池化层,进行特征的提取与学习,然后通过全连接层完成对比,将分类结果通过输出层输出。

那么卷积神经网络最重要的任务我认为只有两个:
1.如何从原始数据中更好的学到特征信息。
2.如何将学到的特征更好的映射到标记样本。
这两个任务应该是CNN分类的关键

卷积层

对于输入层和输出层我们没什么好讲的,我们将从卷积层开始,详细了解卷积层,激活层,池化层和全连接层的详细工作原理。

CNN怎么识别

对于这个问题,我们需要引入CNN的识别原理:CNN的识别本质上是一种“局部特征”的对比,也就是说,我们将输入数据的局部与标注的样本数据的局部对比,如果某个或多个局部对比被判定为“匹配”,则认定其输入数据和样本数据属于同一类别。


朴素来讲,我们可以通过直接对图像中的像素和样本数据对比。但是这样通常过于“武断”,比如下面这种情况。

机器学习——卷积神经网络基础,机器学习,cnn,人工智能

当我们选取了x图形对角线的像素对比,我们会发现并不相等,所以认定右边的图片不是x图形类别。这显然是不合适,我们需要换一种对比方法。

所以我们会选取一个“像素窗口”,截取一小块像素,把这个小块的区域成为“特征”,对比特征无误则可认定为统一类别。
机器学习——卷积神经网络基础,机器学习,cnn,人工智能

卷积层有怎么帮助CNN识别

这里我们需要明确一下这样的几个概念之间的关系
filter滤波器,这个东西实际上是卷积核的集合,而卷积核就是个权重矩阵(二维矩阵)的集合
对于一张RBG图,他的特征层分RBG三层,他通道数就是三个通道。
而且对于滤波器里的一个卷积核来说,他的二维矩阵的数量和通道数是相同的。

如下图所示,蓝色的是图片,黄色的卷积核,绿色的输出的结果(绿色的层数和卷积核的数量相同)
机器学习——卷积神经网络基础,机器学习,cnn,人工智能

我们可以看到上面的CNN对比一个重要的点就是“特征”,卷积层可以通过算法操作,学习特征。

我们将图像视为一个三维数组,他的厚度我们称为通道数(特征层数),每一层长宽视为矩阵的大小。在这样的一层上,我们对其添加“滑动窗口”和滤波器。

然后我们通过滤波器中的各个卷积核对图像卷积(对应元素相乘后求和)得到输出矩阵,如下图。
机器学习——卷积神经网络基础,机器学习,cnn,人工智能
显然两个卷积核得到两个输出矩阵,三个特征层对应每个卷积核三个权重矩阵。
至此,一个卷积层的任务结束。

建议再去了解卷积核、滑动窗口这些东西具体代码的关键参数,比如卷积核的一个关键参数就是核尺寸,步幅和步数。

激活层

激活,激活什么,为什么要激活。
我理解为,激活就是激活整个神经网络的表达空间。
为什么要激活,主要还是因为仅仅靠卷积,我们没法有较好的“表达空间”,所以我们需要一个函数来帮我们把卷积层的结果做非线性映射,提升整个神经网络的表达能力。

这种函数包括:ReLU,softmax,sigmoid等。每个函数都有自身的优点,可以适用于不同场景,当然我们对一个网络可以添加多个激活层。

但是每个网络也会有自身的缺点,这些缺点无非都是偏离了激活层的初衷,让卷积层的结果没法逼近一个非线性函数来提高网络的表达能力。

PS:表达能力就可以看做学习分类能力

池化层

池化,简言之,即取区域平均或最大。

还是给定滑动窗口,但是这次只需要直接输出滑动窗口内的最大值或平均值即可,对应池化成为“最大池化”和“平均池化”。

机器学习——卷积神经网络基础,机器学习,cnn,人工智能

目的是为了压缩特征,提高效率。

全连接层

建议去看这个博主的博客对全连接层(fully connected layer)的通俗理解

本质就是由一个特征空间线性变换到另一个特征空间。目标空间的任一维——也就是隐层的一个 神经元——都认为会受到源空间的每一维的影响。不考虑严谨,可以说,目标向量是源向量的加权和。

全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”(下面会讲到这个分布式特征)映射到样本标记空间的作用。在实际使用中,全连接层可由卷积操作实现:

对前层是全连接的全连接层可以转化为卷积核为1x1的卷积;而前层是卷积层的全连接层可以转化为卷积核为hw的全局卷积,hw分别为前层卷积结果的高和宽。

全连接的核心操作就是矩阵向量乘积 y = Wx

一个简单的CNN网络的层次结构

机器学习——卷积神经网络基础,机器学习,cnn,人工智能文章来源地址https://www.toymoban.com/news/detail-641125.html

到了这里,关于机器学习——卷积神经网络基础的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习第一周:用卷积神经网络实现Mnist手写数字识别(付基础知识解释)

    MNIST 数据集是一个手写数字识别数据集,包含了 60000 张训练图像和 10000 张测试图像,每张图像都是 28x28 像素的灰度图像。 在这个代码中,我们首先使用了 numpy 库中的 np.random.seed() 方法来设置随机种子,以确保结果可重复。 然后,我们使用了 Keras 中的 mnist.load_data() 方法来

    2024年02月08日
    浏览(43)
  • 人工智能领域:面试常见问题超全(深度学习基础、卷积模型、对抗神经网络、预训练模型、计算机视觉、自然语言处理、推荐系统、模型压缩、强化学习、元学习)

    【深度学习入门到进阶】必看系列,含激活函数、优化策略、损失函数、模型调优、归一化算法、卷积模型、序列模型、预训练模型、对抗神经网络等 专栏详细介绍:【深度学习入门到进阶】必看系列,含激活函数、优化策略、损失函数、模型调优、归一化算法、卷积模型、

    2024年02月15日
    浏览(70)
  • 【人工智能】实验五 采用卷积神经网络分类MNIST数据集与基础知识

    熟悉和掌握 卷积神经网络的定义,了解网络中卷积层、池化层等各层的特点,并利用卷积神经网络对MNIST数据集进行分类。 编写卷积神经网络分类软件,编程语言不限,如Python等,以MNIST数据集为数据,实现对MNIST数据集分类操作,其中MNIST数据集共10类,分别为手写0—9。

    2024年02月04日
    浏览(64)
  • 深度学习基础——卷积神经网络(一)

    卷积是卷积神经网络中的基本操作,对于图像的特征提取有着关键的作用,本文首先介绍卷积的基本原理与作用,然后通过编写程序实现卷积操作,并展示了均值、高斯与sobel等几种经典卷积核的卷积效果,接着调用MindSpore中的卷积算子Conv2d来实现卷积操作,最后介绍了Mind

    2024年02月20日
    浏览(40)
  • 机器学习算法之——卷积神经网络(CNN)原理讲解

            我们知道神经网络的结构是这样的: 那卷积神经网络跟它是什么关系呢? 其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进。比如下图中就多了许多传统神经网络没有的层次。 简而言之,卷积神经网络(Convo

    2024年02月04日
    浏览(51)
  • 【机器学习】——续上:卷积神经网络(CNN)与参数训练

    目录 引入 一、CNN基本结构 1、卷积层 2、下采样层 3、全连接层 二、CNN参数训练 总结 卷积神经网络(CNN)是一种有 监督深度模型框架 ,尤其适合处理 二维数据 问题,如行人检测、人脸识别、信号处理等领域,是带有卷积结构的深度神经网络,也是首个真正意义上成功训练

    2024年02月10日
    浏览(52)
  • 【机器学习】基于卷积神经网络 CNN 的猫狗分类问题

    卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。 顾名思义,就是将卷积与前馈神经网络结合,所衍生出来的一种深度学习算法。 卷积神经网络CNN的结构图

    2024年02月17日
    浏览(46)
  • 机器学习实验4——CNN卷积神经网络分类Minst数据集

    基于手写minst数据集,完成关于卷积网络CNN的模型训练、测试与评估。 卷积层 通过使用一组可学习的滤波器(也称为卷积核)对输入图像进行滑动窗口卷积操作,这样可以提取出不同位置的局部特征,从而捕捉到图像的空间结构信息。 激活函数 在卷积层之后,通常会应用一

    2024年01月24日
    浏览(53)
  • 深度学习基础——卷积神经网络的感受野、参数量、计算量

    深度学习在图像处理领域取得了巨大的成功,其中卷积神经网络(Convolutional Neural Networks,CNN)是一种非常重要的网络结构。本文将介绍卷积神经网络的三个重要指标:感受野、参数量和计算量。首先,会对这些指标进行定义,然后介绍如何计算它们,并通过Python实现示例代

    2024年04月28日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包