背景
在处理窗口函数时,ProcessWindowFunction处理函数可以定义三个状态: 富函数getRuntimeContext.getState,
每个key+每个窗口的状态context.windowState(),每个key的状态context.globalState,那么这几个状态之间有什么关系呢?
ProcessWindowFunction处理函数三种状态之间的关系:
1.getRuntimeContext.getState这个定义的状态是每个key维度的,也就是可以跨时间窗口并维持状态的
2.context.windowState()这个定义的状态是和每个key以及窗口相关的,也就是虽然key相同,但是时间窗口不同,他们的值也不一样.
3.context.globalState这个定义的状态是和每个key相关的,也就是和getRuntimeContext.getState的定义一样,可以跨窗口维护状态
验证代码如下所示:
package wikiedits.func;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import wikiedits.func.model.KeyCount;
import java.text.SimpleDateFormat;
import java.util.Date;
public class ProcessWindowFunctionDemo {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 使用处理时间
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
// 并行度为1
env.setParallelism(1);
// 设置数据源,一共三个元素
DataStream<Tuple2<String, Integer>> dataStream = env.addSource(new SourceFunction<Tuple2<String, Integer>>() {
@Override
public void run(SourceContext<Tuple2<String, Integer>> ctx) throws Exception {
int xxxNum = 0;
int yyyNum = 0;
for (int i = 1; i < Integer.MAX_VALUE; i++) {
// 只有XXX和YYY两种name
String name = (0 == i % 2) ? "XXX" : "YYY";
//更新aaa和bbb元素的总数
if (0 == i % 2) {
xxxNum++;
} else {
yyyNum++;
}
// 使用当前时间作为时间戳
long timeStamp = System.currentTimeMillis();
// 将数据和时间戳打印出来,用来验证数据
System.out.println(String.format("source,%s, %s, XXX total : %d, YYY total : %d\n",
name,
time(timeStamp),
xxxNum,
yyyNum));
// 发射一个元素,并且戴上了时间戳
ctx.collectWithTimestamp(new Tuple2<String, Integer>(name, 1), timeStamp);
// 每发射一次就延时1秒
Thread.sleep(1000);
}
}
@Override
public void cancel() {
}
});
// 将数据用5秒的滚动窗口做划分,再用ProcessWindowFunction
SingleOutputStreamOperator<String> mainDataStream = dataStream
// 以Tuple2的f0字段作为key,本例中实际上key只有aaa和bbb两种
.keyBy(value -> value.f0)
// 5秒一次的滚动窗口
.timeWindow(Time.seconds(5))
// 统计每个key当前窗口内的元素数量,然后把key、数量、窗口起止时间整理成字符串发送给下游算子
.process(new ProcessWindowFunction<Tuple2<String, Integer>, String, String, TimeWindow>() {
// 自定义状态
private ValueState<KeyCount> state;
@Override
public void open(Configuration parameters) throws Exception {
// 初始化状态,name是myState
state = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
}
public void clear(Context context){
ValueState<KeyCount> contextWindowValueState = context.windowState().getState(new ValueStateDescriptor<>("myWindowState", KeyCount.class));
contextWindowValueState.clear();
}
@Override
public void process(String s, Context context, Iterable<Tuple2<String, Integer>> iterable,
Collector<String> collector) throws Exception {
// 从backend取得当前单词的myState状态
KeyCount current = state.value();
// 如果myState还从未没有赋值过,就在此初始化
if (current == null) {
current = new KeyCount();
current.key = s;
current.count = 0;
}
int count = 0;
// iterable可以访问该key当前窗口内的所有数据,
// 这里简单处理,只统计了元素数量
for (Tuple2<String, Integer> tuple2 : iterable) {
count++;
}
// 更新当前key的元素总数
current.count += count;
// 更新状态到backend
state.update(current);
System.out.println("getRuntimeContext() == context :" + (getRuntimeContext() == context));
ValueState<KeyCount> contextWindowValueState = context.windowState().getState(new ValueStateDescriptor<>("myWindowState", KeyCount.class));
ValueState<KeyCount> contextGlobalValueState = context.globalState().getState(new ValueStateDescriptor<>("myGlobalState", KeyCount.class));
KeyCount windowValue = contextWindowValueState.value();
if (windowValue == null) {
windowValue = new KeyCount();
windowValue.key = s;
windowValue.count = 0;
}
windowValue.count += count;
contextWindowValueState.update(windowValue);
KeyCount globalValue = contextGlobalValueState.value();
if (globalValue == null) {
globalValue = new KeyCount();
globalValue.key = s;
globalValue.count = 0;
}
globalValue.count += count;
contextGlobalValueState.update(globalValue);
ValueState<KeyCount> contextWindowSameNameState =
context.windowState().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
ValueState<KeyCount> contextGlobalSameNameState =
context.globalState().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
System.out.println("contextWindowSameNameState == contextGlobalSameNameState :" + (
contextWindowSameNameState == contextGlobalSameNameState));
System.out.println(
"state == contextGlobalSameNameState :" + (state == contextGlobalSameNameState));
// 将当前key及其窗口的元素数量,还有窗口的起止时间整理成字符串
String value = String.format("window, %s, %s - %s, %d, total : %d, windowStateCount :%s, globalStateCount :%s\n",
// 当前key
s,
// 当前窗口的起始时间
time(context.window().getStart()),
// 当前窗口的结束时间
time(context.window().getEnd()),
// 当前key在当前窗口内元素总数
count,
// 当前key出现的总数
current.count,
contextWindowValueState.value(),
contextGlobalValueState.value());
// 发射到下游算子
collector.collect(value);
}
});
// 打印结果,通过分析打印信息,检查ProcessWindowFunction中可以处理所有key的整个窗口的数据
mainDataStream.print();
env.execute("processfunction demo : processwindowfunction");
}
public static String time(long timeStamp) {
return new SimpleDateFormat("hh:mm:ss").format(new Date(timeStamp));
}
}
输出结果:
window, XXX, 08:34:45 - 08:34:50, 3, total : 22, windowStateCount :KeyCount{key='XXX', count=3}, globalStateCount :KeyCount{key='XXX', count=22}
window, YYY, 08:34:45 - 08:34:50, 2, total : 22, windowStateCount :KeyCount{key='YYY', count=2}, globalStateCount :KeyCount{key='YYY', count=22}
从结果可以验证以上的结论,此外需要特别注意的一点是context.windowState()的状态需要在clear方法中清理掉,因为一旦时间窗口结束,就再也没有机会清理了
从这个例子中还发现一个比较有趣的现象:
ValueState<KeyCount> state = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
ValueState<KeyCount> contextWindowSameNameState =
context.windowState().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
ValueState<KeyCount> contextGlobalSameNameState =
context.globalState().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
在open中通过getRuntimeContext().getState定义的状态竟然可以通过 context.windowState()/ context.globalState()访问到,并且他们指向的都是同一个变量,可以参见代码的输出:
System.out.println("contextWindowSameNameState == contextGlobalSameNameState :" + (
contextWindowSameNameState == contextGlobalSameNameState));
System.out.println(
"state == contextGlobalSameNameState :" + (state == contextGlobalSameNameState));
结果如下:文章来源:https://www.toymoban.com/news/detail-641239.html
contextWindowSameNameState == contextGlobalSameNameState :true
state == contextGlobalSameNameState :true
参考文献:
https://cloud.tencent.com/developer/article/1815079文章来源地址https://www.toymoban.com/news/detail-641239.html
到了这里,关于flink的ProcessWindowFunction函数的三种状态的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!