基于rsesnet网络架构的图像分类模型

这篇具有很好参考价值的文章主要介绍了基于rsesnet网络架构的图像分类模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数据预处理部分:

  • 数据增强:torchvision中transforms模块自带功能,比较实用
  • 数据预处理:torchvision中transforms也帮我们实现好了,直接调用即可
  • DataLoader模块直接读取batch数据

网络模块设置:

  • 加载预训练模型,torchvision中有很多经典网络架构,调用起来十分方便,并且可以用人家训练好的权重参数来继续训练,也就是所谓的迁移学习
  • 需要注意的是别人训练好的任务跟咱们的可不是完全一样,需要把最后的head层改一改,一般也就是最后的全连接层,改成咱们自己的任务
  • 训练时可以全部重头训练,也可以只训练最后咱们任务的层,因为前几层都是做特征提取的,本质任务目标是一致的
  • resnet只有18、50、101、152层的网络结构

网络模型保存与测试

  • 模型保存的时候可以带有选择性,例如在验证集中如果当前效果好则保存
  • 读取模型进行实际测试

基于rsesnet网络架构的图像分类模型,# 人工智能pytorch框架,分类,数据挖掘,人工智能

import os
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import torch
from torch import nn
import torch.optim as optim
import torchvision
#pip install torchvision
from torchvision import transforms, models, datasets
#https://pytorch.org/docs/stable/torchvision/index.html
import imageio
import time
import warnings
warnings.filterwarnings("ignore")
import random
import sys
import copy
import json
from PIL import Image

数据读取与预处理操作

data_dir = './flower_data/'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'

制作好数据源:

  • data_transforms中指定了所有图像预处理操作
  • ImageFolder假设所有的文件按文件夹保存好,每个文件夹下面存贮同一类别的图片,文件夹的名字为分类的名字
data_transforms = {
    'train': 
        transforms.Compose([
        transforms.Resize([96, 96]),#将每张图片转化为大小相同,但是肯定会丢失一些信息 
        transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选
        transforms.CenterCrop(64),#从中心开始裁剪
        transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率
        transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转
        transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
        transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=B
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差,这些参数主要是基于大数据算出来的
    ]),
    'valid': 
        transforms.Compose([
        transforms.Resize([64, 64]),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}
batch_size = 128

image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}
class_names = image_datasets['train'].classes

读取标签对应的实际名字

#读取标签对应的实际名字
with open('cat_to_name.json','r') as f:
    cat_to_name = json.load(f)

加载models中提供的模型,并且直接用训练的好权重当做初始化参数

model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
#是否用人家训练好的特征来做
feature_extract = True #都用人家特征,咱先不更新
# 是否用GPU训练
train_on_gpu = torch.cuda.is_available()

if not train_on_gpu:
    print('CUDA is not available.  Training on CPU ...')
else:
    print('CUDA is available!  Training on GPU ...')
    
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
模型参数要不要更新
  • 有时候用人家模型,就一直用了,更不更新咱们可以自己定
model_ft = models.resnet18()#18层的能快点,条件好点的也可以选152
model_ft
def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False #设置成false的话,在反向传播的过程种,参数就不再进行更新了
for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
        print("\t",name)

把模型输出层改成自己的

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
    
    model_ft = models.resnet18(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, num_classes)#类别数自己根据自己任务来
                            
    input_size = 64#输入大小根据自己配置来

    return model_ft, input_size

设置哪些层需要训练

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)

#GPU还是CPU计算
model_ft = model_ft.to(device)

# 模型保存,名字自己起
filename='best.pt'

# 是否训练所有层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
    params_to_update = []
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            params_to_update.append(param)
            print("\t",name)
else:
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)

优化器设置

# 优化器设置
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)#要训练啥 参数,你来定
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=10, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
criterion = nn.CrossEntropyLoss()

训练模块

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,filename='best.pt'):
    #咱们要算时间的
    since = time.time()
    #也要记录最好的那一次
    best_acc = 0
    #模型也得放到你的CPU或者GPU
    model.to(device)
    #训练过程中打印一堆损失和指标
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    #学习率
    LRs = [optimizer.param_groups[0]['lr']]
    #最好的那次模型,后续会变的,先初始化
    best_model_wts = copy.deepcopy(model.state_dict())
    #一个个epoch来遍历
    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # 训练和验证
        for phase in ['train', 'valid']:
            if phase == 'train':
                model.train()  # 训练
            else:
                model.eval()   # 验证

            running_loss = 0.0
            running_corrects = 0

            # 把数据都取个遍
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)#放到你的CPU或GPU
                labels = labels.to(device)

                # 清零
                optimizer.zero_grad()
                # 只有训练的时候计算和更新梯度
                outputs = model(inputs)
                loss = criterion(outputs, labels)
                _, preds = torch.max(outputs, 1)
                # 训练阶段更新权重
                if phase == 'train':
                    loss.backward()
                    optimizer.step()

                # 计算损失
                running_loss += loss.item() * inputs.size(0)#0表示batch那个维度
                running_corrects += torch.sum(preds == labels.data)#预测结果最大的和真实值是否一致
                
            
            
            epoch_loss = running_loss / len(dataloaders[phase].dataset)#算平均
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
            
            time_elapsed = time.time() - since#一个epoch我浪费了多少时间
            print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
            print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
            

            # 得到最好那次的模型
            if phase == 'valid' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
                state = {
                  'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重
                  'best_acc': best_acc,
                  'optimizer' : optimizer.state_dict(),
                }
                torch.save(state, filename)
            if phase == 'valid':
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                #scheduler.step(epoch_loss)#学习率衰减
            if phase == 'train':
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)
        
        print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
        LRs.append(optimizer.param_groups[0]['lr'])
        print()
        scheduler.step()#学习率衰减

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # 训练完后用最好的一次当做模型最终的结果,等着一会测试
    model.load_state_dict(best_model_wts)
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

开始训练!

  • 我们现在只训练了输出层
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=2)

再继续训练所有层

for param in model_ft.parameters():
    param.requires_grad = True

# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(model_ft.parameters(), lr=1e-3)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

# 损失函数
criterion = nn.CrossEntropyLoss()
# 加载之前训练好的权重参数
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10,)

加载训练好的模型

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)

# GPU模式
model_ft = model_ft.to(device)

# 保存文件的名字
filename='best.pt'

# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

测试数据预处理

  • 测试数据处理方法需要跟训练时一直才可以
  • crop操作的目的是保证输入的大小是一致的
  • 标准化操作也是必须的,用跟训练数据相同的mean和std,但是需要注意一点训练数据是在0-1上进行标准化,所以测试数据也需要先归一化
  • 最后一点,PyTorch中颜色通道是第一个维度,跟很多工具包都不一样,需要转换
# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = dataiter.next()

model_ft.eval()

if train_on_gpu:
    output = model_ft(images.cuda())
else:
    output = model_ft(images)

output表示对一个batch中每一个数据得到其属于各个类别的可能性

output.shape

得到概率最大的那个

_, preds_tensor = torch.max(output, 1)

preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
preds

展示预测结果

def im_convert(tensor):
    """ 展示数据"""
    
    image = tensor.to("cpu").clone().detach()
    image = image.numpy().squeeze()
    image = image.transpose(1,2,0)
    image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
    image = image.clip(0, 1)

    return image
fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2

for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
    plt.imshow(im_convert(images[idx]))
    ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
                 color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()

基于rsesnet网络架构的图像分类模型,# 人工智能pytorch框架,分类,数据挖掘,人工智能### 完整代码文章来源地址https://www.toymoban.com/news/detail-641266.html

import os
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
import torch.optim as optim
import torchvision
#pip install torchvision
from torchvision import transforms, models, datasets
#https://pytorch.org/docs/stable/torchvision/index.html
import imageio
import time
import warnings
warnings.filterwarnings("ignore")
import random
import sys
import copy
import json
from PIL import Image


#检验torch(GPU)是否可以用
print(torch.cuda.is_available())

#读取数据
data_dir = "./flower_data/"
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'

#制作数据源
data_transforms = {
    'train':
        transforms.Compose([
        transforms.Resize([96, 96]),#将每张图片转化为大小相同,但是肯定会丢失一些信息
        transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选
        transforms.CenterCrop(64),#从中心开始裁剪
        transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率
        transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转
        transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
        transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=B
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差,这些参数主要是基于大数据算出来的
    ]),
    'valid':
        transforms.Compose([
        transforms.Resize([64, 64]),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}
batch_size = 128
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}
class_names = image_datasets['train'].classes

#读取标签对应的实际名字
with open('cat_to_name.json','r') as f:
    cat_to_name = json.load(f)

model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
#是否用人家训练好的特征来做
feature_extract = True #都用人家特征,咱先不更新

# 是否用GPU训练
train_on_gpu = torch.cuda.is_available()
if not train_on_gpu:
    print('CUDA is not available.  Training on CPU ...')
else:
    print('CUDA is available!  Training on GPU ...')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

#模型参数要不要更新
#有时候用人家模型,就一直用了,更不更新咱们可以自己定
model_ft = models.resnet18()#18层的能快点,条件好点的也可以选152

def set_parameter_requires_grad(model,feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False#设置成false的话,在反向传播的过程种,参数就不再进行更新了

# 把模型输出层改成自己的
def initialize_model(model_name,num_classes,feature_extract, use_pretrained=True):
    model_ft = models.resnet18(pretrained=use_pretrained)
    set_parameter_requires_grad(model_name, feature_extract)
    num_ftrs = model_name.fc.in_features
    model_name.fc = nn.Linear(num_ftrs, num_classes)  # 类别数自己根据自己任务来
    input_size = 64  # 输入大小根据自己配置来
    return model_name,input_size

model_ft, input_size = initialize_model(model_ft, 102, feature_extract, use_pretrained=True)
#GPU还是CPU计算
model_ft = model_ft.to(device)
# 模型保存,名字自己起
filename='best.pt'

#设置哪些层需要训练
if feature_extract:
    params_to_update = []
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            params_to_update.append(param)
            print("\t",name)
else:
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)

optimizer_ft = optim.Adam(params=params_to_update,lr =1e-2)#要训练啥 参数,你来定
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=10, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
criterion = nn.CrossEntropyLoss()


#训练模块
def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,filename='best.pt'):
    #咱们要算时间的
    since = time.time()
    #也要记录最好的那一次
    best_acc = 0
    #模型也得放到你的CPU或者GPU
    model.to(device)
    #训练过程中打印一堆损失和指标
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    #学习率
    LRs = [optimizer.param_groups[0]['lr']]
    #最好的那次模型,后续会变的,先初始化
    best_model_wts = copy.deepcopy(model.state_dict())
    #一个个epoch来遍历
    for epoch in range(num_epochs):
        print(f"Epoch {epoch}/{num_epochs - 1}")
        print('-'*10)

        #训练和验证
        # 训练和验证
        for phase in ['train', 'valid']:
            if phase == 'train':
                model.train()  # 训练
            else:
                model.eval()  # 验证

            running_loss = 0.0
            running_corrects = 0

            # 把数据都取个遍
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)  # 放到你的CPU或GPU
                labels = labels.to(device)

                # 清零
                optimizer.zero_grad()
                # 只有训练的时候计算和更新梯度
                outputs = model(inputs)
                loss = criterion(outputs, labels)
                _, preds = torch.max(outputs, 1)
                # 训练阶段更新权重
                if phase == 'train':
                    loss.backward()
                    optimizer.step()

                # 计算损失
                running_loss += loss.item() * inputs.size(0)  # 0表示batch那个维度
                running_corrects += torch.sum(preds == labels.data)  # 预测结果最大的和真实值是否一致

            epoch_loss = running_loss / len(dataloaders[phase].dataset)  # 算平均
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

            time_elapsed = time.time() - since  # 一个epoch我浪费了多少时间
            print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
            print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

            # 得到最好那次的模型
            if phase == 'valid' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
                state = {
                    'state_dict': model.state_dict(),  # 字典里key就是各层的名字,值就是训练好的权重
                    'best_acc': best_acc,
                    'optimizer': optimizer.state_dict(),
                }
                torch.save(state, filename)
            if phase == 'valid':
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                # scheduler.step(epoch_loss)#学习率衰减
            if phase == 'train':
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)
        print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
        LRs.append(optimizer.param_groups[0]['lr'])
        print()
        scheduler.step()#学习率衰减
    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # 训练完后用最好的一次当做模型最终的结果,等着一会测试
    model.load_state_dict(best_model_wts)
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs

#开始训练模型
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=2)

#再继续训练所有层
for param in model_ft.parameters():
    param.requires_grad = True
# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(model_ft.parameters(), lr=1e-3)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
# 损失函数
criterion = nn.CrossEntropyLoss()

# 加载之前训练好的权重参数
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10,)

#加载训练好的模型
model_ft, input_size = initialize_model(model_ft, 102, feature_extract, use_pretrained=True)
# GPU模式
model_ft = model_ft.to(device)
# 保存文件的名字
filename='best.pt'
# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

# 测试数据预处理
# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = dataiter.next()

model_ft.eval()

if train_on_gpu:
    output = model_ft(images.cuda())
else:
    output = model_ft(images)


_, preds_tensor = torch.max(output, 1)

# 得到概率最大的那个
preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())

#展示预测的结果
def im_convert(tensor):
    """ 展示数据"""

    image = tensor.to("cpu").clone().detach()
    image = image.numpy().squeeze()
    image = image.transpose(1, 2, 0)
    image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
    image = image.clip(0, 1)

    return image

fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2

for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
    plt.imshow(im_convert(images[idx]))
    ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
                 color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()

到了这里,关于基于rsesnet网络架构的图像分类模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 互联网加竞赛 基于人工智能的图像分类算法研究与实现 - 深度学习卷积神经网络图像分类

    🔥 优质竞赛项目系列,今天要分享的是 基于人工智能的图像分类技术 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 传统CNN包含卷积层、全连接层等组件,并采用softmax多类别分类器和多类交叉熵损失

    2024年02月02日
    浏览(60)
  • 项目实战解析:基于深度学习搭建卷积神经网络模型算法,实现图像识别分类

    随着人工智能的不断发展,深度学习这门技术也越来越重要,很多人都开启了学习机器学习,本文将通过项目开发实例,带领大家从零开始设计实现一款基于深度学习的图像识别算法。 学习本章内容, 你需要掌握以下基础知识: Python 基础语法 计算机视觉库(OpenCV) 深度学习

    2024年02月03日
    浏览(66)
  • 毕业设计:基于深度学习的图像分类识别系统 人工智能

    目录 前言 项目背景 数据集 设计思路 自注意力 网络模型 实验环境 实验结果分析 更多帮助     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课

    2024年04月16日
    浏览(102)
  • 人工智能学习与实训笔记(二):神经网络之图像分类问题

    人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客 目录 二、图像分类问题 2.1 尝试使用全连接神经网络 2.2 引入卷积神经网络  2.3 分类函数Softmax 2.4 交叉熵损失函数 2.5 学习率优化算法 2.6 图像预处理算法 2.6.1 随机改变亮暗、对比度和颜色等 2.6.2 随机填充 2.6.

    2024年02月20日
    浏览(49)
  • 基于残差网络的人工智能文本分类方法

    作者:禅与计算机程序设计艺术 引言 1.1. 背景介绍 随着互联网和电子商务的快速发展,文本分类技术在自然语言处理领域取得了重要地位。在实际应用中,人们需要处理大量的文本数据,例如新闻报道、社交媒体内容、公司业务邮件等。自动化文本分类方法可以帮助人们快

    2024年02月07日
    浏览(41)
  • 图像分类卷积神经网络模型综述

    图像分类:核心任务是从给定的分类集合中给图像分配一个标签任务。 输入:图片 输出:类别。 MNIST数据集是用来识别手写数字,由0~9共10类别组成。 从MNIST数据集的SD-1和SD-3构建的,其中包含手写数字的二进制图像: MNIST数据集将SD-3作为训练集,将SD-1作为测试集,但SD-3比

    2023年04月14日
    浏览(39)
  • 人工智能在教育上的应用1-基于pytorch框架下模型训练,用于数学题目图形的智能分类

    大家好,今天给大家介绍一下人工智能在教育上的应用1-基于pytorch框架下模型训练,用于数学题目图形的智能分类,本文将利用CNN算法对数学题目中的图形进行自动分类和识别。这种应用可以帮助学生更好地理解和解决与数学相关的问题。基于CNN的数学题目图形智能分类功能

    2024年02月16日
    浏览(48)
  • 90 | Python人工智能篇 —— 深度学习算法 Keras基于卷积神经网络的情感分类

    情感分类是自然语言处理(NLP)领域的一个重要任务,它旨在将文本划分为积极、消极或中性等不同情感类别。深度学习技术,尤其是卷积神经网络(CNN),在情感分类任务中取得了显著的成果。Keras作为一个高级的深度学习框架,提供了便捷易用的工具来构建和训练情感分

    2024年02月13日
    浏览(54)
  • 人工智能讲师大模型培训老师叶梓:基于大型语言模型的自主智能体:架构设计与应用前景

    在人工智能的快速发展中,大型语言模型(LLM)已成为推动技术进步的关键力量。LLM的出现不仅改变了我们与机器的交互方式,也为构建具有高级认知能力的自主智能体(AI Agent)提供了新的可能性。本文旨在探讨基于LLM的AI Agent的架构设计,并对其在未来应用中的潜力进行展

    2024年04月17日
    浏览(59)
  • 【图像分类】基于卷积神经网络和主动学习的高光谱图像分类(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 文献来

    2024年02月12日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包