【深度学习注意力机制系列】—— ECANet注意力机制(附pytorch实现)

这篇具有很好参考价值的文章主要介绍了【深度学习注意力机制系列】—— ECANet注意力机制(附pytorch实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ECANet(Efficient Channel Attention Network)是一种用于图像处理任务的神经网络架构,它在保持高效性的同时,有效地捕捉图像中的通道间关系,从而提升了特征表示的能力。ECANet通过引入通道注意力机制,以及在卷积层中嵌入该机制,取得了优越的性能。本文将对ECANet的核心思想、结构以及优势进行详细讲解。

1. 核心思想

ECANet的核心思想是在卷积操作中引入通道注意力机制,以捕捉不同通道之间的关系,从而提升特征表示的能力。通道注意力机制的目标是自适应地调整通道特征的权重,使得网络可以更好地关注重要的特征,抑制不重要的特征。通过这种机制,ECANet能够在不增加过多参数和计算成本的情况下,有效地增强网络的表征能力。

2. 结构

ECANet的结构主要分为两个部分:通道注意力模块嵌入式通道注意力模块

【深度学习注意力机制系列】—— ECANet注意力机制(附pytorch实现),深度学习,# PyTorch,深度学习,pytorch,人工智能,python,机器学习

  • 通道注意力模块

通道注意力模块是ECANet的核心组成部分,它的目标是根据通道之间的关系,自适应地调整通道特征的权重。该模块的输入是一个特征图(Feature Map),通过全局平均池化得到每个通道的全局平均值,然后通过一组全连接层来生成通道注意力权重。这些权重被应用于输入特征图的每个通道,从而实现特征图中不同通道的加权组合。最后,通过一个缩放因子对调整后的特征进行归一化,以保持特征的范围。

  • 嵌入式通道注意力模块

嵌入式通道注意力模块是ECANet的扩展部分,它将通道注意力机制嵌入到卷积层中,从而在卷积操作中引入通道关系。这种嵌入式设计能够在卷积操作的同时,进行通道注意力的计算,减少了计算成本。具体而言,在卷积操作中,将输入特征图划分为多个子特征图,然后分别对每个子特征图进行卷积操作,并在卷积操作的过程中引入通道注意力。最后,将这些卷积得到的子特征图进行合并,得到最终的输出特征图。

实现机制:

  • 通过全剧平均池化层,将每个通道大的二维特征(h*w)压缩为一个实数, 特征图维变化: (C, H, W) -> (C, 1, 1)

  • 计算得到自适应的一维卷积核的kernel_size,计算公式如下:

【深度学习注意力机制系列】—— ECANet注意力机制(附pytorch实现),深度学习,# PyTorch,深度学习,pytorch,人工智能,python,机器学习

其中
b = 1 γ = 2 C 为通道数 b = 1 \\ \gamma = 2\\ C为通道数 b=1γ=2C为通道数

  • 将kernel_size = k的一维卷积核(一维same核)用于特征图,得到每个通道的权重向量, 维度变化(C, 1, 1) -> (C, 1, 1).
  • 将归一化后的权重加权乘以输入特征图 (C, H, W) * (C, 1, 1) -> (C, H, W)

3. 优势

ECANet的设计在以下几个方面具有优势:

  • 高效性

ECANet通过嵌入式通道注意力模块,在保持高效性的同时,引入了通道注意力机制。这使得网络能够在不增加过多计算成本的情况下,提升特征表示的能力。

  • 提升特征表示

通道注意力机制能够自适应地调整通道特征的权重,使得网络能够更好地关注重要的特征。这种机制有助于提升特征的判别能力,从而提升了网络的性能。

  • 减少过拟合

通道注意力机制有助于抑制不重要的特征,从而减少了过拟合的风险。网络更加关注重要的特征,有助于提高泛化能力。

4. 代码实现

class ECANet(nn.Module):
    def __init__(self, in_channels, gamma=2, b=1):
        super(ECANet, self).__init__()
        self.in_channels = in_channels
        self.fgp = nn.AdaptiveAvgPool2d((1, 1))
        kernel_size = int(abs((math.log(self.in_channels, 2) + b) / gamma))
        kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
        self.con1 = nn.Conv1d(1,
                              1,
                              kernel_size=kernel_size,
                              padding=(kernel_size - 1) // 2,
                              bias=False)
        self.act1 = nn.Sigmoid()

    def forward(self, x):
        output = self.fgp(x)
        output = output.squeeze(-1).transpose(-1, -2)
        output = self.con1(output).transpose(-1, -2).unsqueeze(-1)
        output = self.act1(output)
        output = torch.multiply(x, output)
        return output

总结

ECANet是一种高效的神经网络架构,通过引入通道注意力机制,能够有效地捕捉图像中的通道关系,提升特征表示的能力。它的结构包括通道注意力模块和嵌入式通道注意力模块,具有高效性、提升特征表示和减少过拟合等优势。通过这种设计,ECANet在图像处理任务中取得了优越的性能。文章来源地址https://www.toymoban.com/news/detail-641370.html

到了这里,关于【深度学习注意力机制系列】—— ECANet注意力机制(附pytorch实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 点云深度学习系列博客(五): 注意力机制原理概述

    目录 1. 注意力机制由来 2. Nadaraya-Watson核回归 3. 多头注意力与自注意力 4. Transformer模型 Reference 随着Transformer模型在NLP,CV甚至CG领域的流行,注意力机制(Attention Mechanism)被越来越多的学者所注意,将其引入各种深度学习任务中,以提升性能。清华大学胡世民教授团队近期发

    2024年02月10日
    浏览(40)
  • 注意力机制——ECANet及Mobilenetv2模型应用

    一、介绍 ECANet(CVPR 2020)作为一种轻量级的注意力机制,其实也是通道注意力机制的一种实现形式。其论文和开源代码为: 论文地址:https://arxiv.org/abs/1910.03151 代码:https://github.com/BangguWu/ECANet ECA模块,去除了原来SE模块中的全连接层,直接在全局平均池化之后的特征上通过

    2024年02月16日
    浏览(46)
  • 注意力机制——ECANet(Efficient Channel Attention Network)

    ECANet(Efficient Channel Attention Network )是一种新颖的注意力机制,用于深度神经网络中的特征提取,它可以有效地减少模型参数量和计算量,提高模型的性能。 ECANet注意力机制是针对通道维度的注意力加权机制。它的基本思想是,通过学习通道之间的相关性,自适应地调整通道

    2024年02月16日
    浏览(40)
  • Attention注意力机制——ECANet以及加入到1DCNN网络方法

    原文:https://arxiv.org/abs/1910.03151 代码:https://github.com/BangguWu/ECANet 论文题目:ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks 目录 引言 一、ECANet结构  二、ECANet代码 三、将ECANet作为一个模块加入到CNN中  1、要加入的CNN网络  2、加入eca_block的语句 3、加入eca_block后的

    2023年04月14日
    浏览(44)
  • 【深度学习】注意力机制

    注意力机制(Attention Mechanism)是一种在计算机科学和机器学习中常用的技术,可以使模型在处理序列数据时更加准确和有效。在传统的神经网络中,每个神经元的输出只依赖于前一层的所有神经元的输出,而在注意力机制中,每个神经元的输出不仅仅取决于前一层的所有神经

    2024年02月02日
    浏览(38)
  • 深度学习——常见注意力机制

    SENet属于通道注意力机制。2017年提出,是imageNet最后的冠军 SENet采用的方法是对于特征层赋予权值。 重点在于如何赋权 1.将输入信息的所有通道平均池化。 2.平均池化后进行两次全连接,第一次全连接链接的神经元较少,第二次全连接神经元数和通道数一致 3.将Sigmoid的值固定

    2024年02月14日
    浏览(29)
  • 【动手深度学习-笔记】注意力机制(四)自注意力、交叉注意力和位置编码

    紧接上回:【动手深度学习-笔记】注意力机制(三)多头注意力 在注意力机制下,我们将词元序列输入注意力汇聚中,以便同一组词元同时充当查询、键和值。 具体来说,每个查询都会关注所有的键-值对并生成一个注意力输出。 像这样的,查询、键和值来自同一组输入的

    2024年01月16日
    浏览(45)
  • 深度学习(5)---自注意力机制

     1. 一般情况下在简单模型中我们输入一个向量,输出结果可能是一个数值或者一个类别。但是在复杂的模型中我们一般会输入一组向量,那么输出结果可能是一组数值或一组类别。  2. 一句话、一段语音、一张图等都可以转换成一组向量。  3. 输入一组向量,一般输出结

    2024年01月23日
    浏览(40)
  • 【深度学习实验】注意力机制(一):注意力权重矩阵可视化(矩阵热图heatmap)

    ​    注意力机制 作为一种模拟人脑信息处理的关键工具,在深度学习领域中得到了广泛应用。本系列实验旨在通过理论分析和代码演示,深入了解注意力机制的原理、类型及其在模型中的实际应用。 本文将介绍将介绍 注意力权重矩阵可视化 (矩阵热图heatmap)   本系

    2024年02月05日
    浏览(42)
  • 深度学习CV方向学习笔记5 —— 通道注意力机制

    目录 1 问题:MobileNet 中的注意力机制 2 SE 通道注意力机制 2.1 SE 通道注意力机制的定义与作用 2.2 SE过程: Squeeze + Excitation + Scale 3 其他通道注意力机制 4 参考链接 问题描述: MobileNet 中使用了通道注意力机制,是如何实现的?CNN中还有哪些 Attention? 2.1 SE 通道注意力机制的定义

    2024年02月08日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包