opencv基础-07-感兴趣区域(ROI)

这篇具有很好参考价值的文章主要介绍了opencv基础-07-感兴趣区域(ROI)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在图像处理过程中,我们可能会对图像的某一个特定区域感兴趣,该区域被称为感兴趣区
域(Region of Interest,ROI)。在设定感兴趣区域 ROI 后,就可以对该区域进行整体操作。

以下是一些

OpenCV ROI应用场景

的例子:

目标检测和跟踪:在计算机视觉中,目标检测和跟踪是常见的任务。通过使用ROI功能,可以选择感兴趣的区域,并在该区域上应用特定的目标检测和跟踪算法,从而提高处理速度和准确性。

图像分割:ROI可以用于图像分割任务,将图像分成不同的区域或对象。通过选择感兴趣的区域,可以将处理集中在关键区域,提高图像分割的效果。

物体识别和分类:在物体识别和分类任务中,ROI可以用于选择物体所在的区域,并对该区域进行特征提取和分类。通过选择感兴趣的区域,可以减少计算量并提高识别和分类的准确性。

图像增强:ROI功能可以用于局部图像增强。通过选择感兴趣的区域,可以对该区域应用各种图像增强技术,如对比度增强、锐化等,从而改善图像的可视化效果。

视频处理:在视频处理中,ROI功能可以用于选择视频帧中的感兴趣区域,并在该区域上应用各种处理算法,如运动检测、背景建模等。这有助于提高视频处理的效率和准确性。

总之,OpenCV的ROI功能在计算机视觉中有广泛的应用,可以用于目标检测、图像分割、物体识别、图像增强和视频处理等任务。通过选择感兴趣的区域,可以提高处理效率并获得更好的处理结果。

简单示例操作熟悉ROI
将一个感兴趣区域 A 赋值给变量 B 后,可以将该变量 B 赋值给另外一个区域 C,从而达到在区域 C 内复制区域 A 的目的。

例如,在图 2-16 中,假设当前图像的名称为 img,图中的数字分别表示行号和列号。那么,
图像中的黑色 ROI 可以表示为 img[200:400, 200:400]。

opencv roi,opencv,opencv,人工智能,计算机视觉,python,图像处理
我们来看下[200:400, 200:400]这个数值的含义:

img[200:400, 200:400]表示选择图像img中行索引(y轴)在200到400之间、列索引(x轴)在200到400之间的区域作为ROI。该操作将返回一个新的图像,该图像仅包含原图像在指定区域内的像素值

示例:读取一张图片,打印原图及roi 区域图

import cv2
import numpy as np
a=cv2.imread("2.png",cv2.IMREAD_UNCHANGED)

face=a[220:400,250:350]
cv2.imshow("original",a)
cv2.imshow("face",face)
cv2.waitKey()
cv2.destroyAllWindows()

运行效果:

opencv roi,opencv,opencv,人工智能,计算机视觉,python,图像处理
示例2:
将一幅图像内的 ROI 复制到另一幅图像内。

import cv2
import numpy as np


a=cv2.imread("222.jpg",cv2.IMREAD_UNCHANGED)

b=cv2.imread("740.jpg",cv2.IMREAD_UNCHANGED)

print("a.shape=",a.shape)
print("b.shape=",b.shape)

cv2.imshow("people",a)
cv2.imshow("number",b)

#从第一张图片中截取人脸
face=a[220:400,250:350]
#将人脸放到第二张图片中,覆盖掉数字
b[160:340,200:300]=face
#显示结果
cv2.imshow("result",b)

cv2.waitKey()
cv2.destroyAllWindows()

运行效果:

opencv roi,opencv,opencv,人工智能,计算机视觉,python,图像处理

在目标检测任务中,如果只想检测ROI区域内的目标,可以按照以下步骤进行操作:

使用目标检测算法(如YOLO、SSD、Faster R-CNN等)对整个图像进行目标检测。这将产生检测框(bounding box)和相应的目标类别。

对于每个检测到的目标,判断其检测框是否与ROI区域有重叠(交集)。可以使用交并比(Intersection over Union,IoU)等指标进行判断。

如果目标的检测框与ROI区域有重叠,将其保留;如果没有重叠,可以将其忽略或排除。

对于保留下来的目标,可以进行后续的处理和分析,如目标跟踪、目标分类、目标姿态估计等。

请注意,上述步骤中的目标检测算法需要在整个图像上运行,以确保检测到所有的目标。然后,通过与ROI区域的重叠判断来决定是否保留目标。这种方法可以有效地筛选出ROI区域内的目标,并提高目标检测的效率。

下面是一个简单的示例代码,展示如何使用OpenCV进行目标检测,并只检测ROI区域内的目标文章来源地址https://www.toymoban.com/news/detail-641460.html

import cv2

# 读取图像
image = cv2.imread('image.jpg')

# 定义ROI区域的坐标范围
roi_x, roi_y, roi_w, roi_h = 200, 200, 200, 200

# 加载目标检测器(这里以Haar级联分类器为例)
cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

# 将图像转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 在整个图像上运行目标检测
objects = cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

# 遍历检测到的目标
for (x, y, w, h) in objects:
    # 判断目标是否在ROI区域内
    if x >= roi_x and y >= roi_y and x + w <= roi_x + roi_w and y + h <= roi_y + roi_h:
        # 在图像中绘制目标框
        cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)

# 显示带有目标框的图像
cv2.imshow('Result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

到了这里,关于opencv基础-07-感兴趣区域(ROI)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCvSharp-鼠标框选截取感兴趣区域(ROI)-附源代码

     前言:ROI(Region of Interest)是图像处理中的一个重要概念,指的是图像中感兴趣的区域。在这个区域内,我们通常希望执行某种特定的操作、获取特定信息,或者进行进一步的分析。ROI 可以是图像的一个矩形、圆形、多边形或者其他各种形状。 目录 一、核心函数: 委托

    2024年02月04日
    浏览(52)
  • Baumer工业相机堡盟相机如何使用ROI感兴趣区域功能( PARTIAL SCAN ROI功能的优点和行业应用)(C#)

    Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。   Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具有快速数据传输、低功耗、易于集成以及高度可

    2024年02月05日
    浏览(42)
  • Opencv 如何获取roi区域

    关于图片处理,经常遇到的一个问题是如何获取roi区域(说白了就是抠图),并对roi区域赋值,比如说赋值成黑色。 首先,关于如何获取roi区域,opencv的Mat类中提供了两种方法。代码如下: 上述两种获取roi的方式是通过重载()运算符实现的,根据上面的描述可以看到通过上面

    2024年02月09日
    浏览(43)
  • OpenCV(十四):ROI区域截取

    在OpenCV中,你可以使用Rect对象或cv::Range来截取图像的感兴趣区域(Region of Interest,ROI)。 方法一:使用Rect对象截取图像 Rect_(_Tp _x, _Tp _y, _Tp _width,_Tp _height) Tp:数据类型,C++模板特性,可以用int、double、float等替换。 _x:矩形区域左上角第一个像素的x坐标,也就是第一个像素

    2024年02月10日
    浏览(38)
  • 迅为RK3568开发板使用OpenCV处理图像-ROI区域-位置提取ROI

    在图像处理过程中,我们可能会对图像的某一个特定区域感兴趣,该区域被称为感兴趣区域(Region of Interest, ROI)。在设定感兴趣区域 ROI 后,就可以对该区域进行整体操作。 位置提取 ROI 本小节代码在配套资料“iTOP-3568 开发板\\03_【iTOP-RK3568 开发板】指南教程\\04_OpenCV 开发配

    2024年02月21日
    浏览(39)
  • OpenCV截取ROI区域——多种形状(圆形)

    背景:在做一个中国象棋机器人的项目,项目中需要识别象棋棋子上的汉字,计划采用CNN的方式实现这一功能。在制作CNN训练的数据集的时候,需要一个截取象棋中心文字的问题。当我们定位到一个象棋的位置之后,我首先将包裹象棋的一个50*50的矩形取阈截取出来,但是,

    2024年02月16日
    浏览(49)
  • OpenCV学习笔记 | ROI区域选择提取 | Python

            ROI区域是指图像中我们感兴趣的特定区域,OpenCV提供了一些函数来选择和提取ROI区域,我们可以使用OpenCV的鼠标事件绑定函数,然后通过鼠标操作在图像上绘制一个矩形框,该矩形框即为ROI区域。本文将介绍代码的实现以及四个主要函数 cv2.setMouseCallback、def sele

    2024年02月07日
    浏览(45)
  • 6. QT环境下使用OPenCV(利用鼠标实现图像的ROI区域选择)

    1. 说明 一张图像显示的内容可能并非所有的都是有用信息,有时需要选定某些区域做出特殊的处理。在OPenCV当中可以在图像上响应鼠标的操作,选取出图像上的特殊区域 — ROI区域。 效果展示: 2. 实现步骤 首先在QtCreator中创建一个新的widget项目,并配置好OPenCV的开发环境,

    2024年02月12日
    浏览(48)
  • opencv-20 深入理解HSV 色彩空间(通过指定,标记颜色等来拓展ROI区域)

    RGB 色彩空间是一种被广泛接受的色彩空间,但是该色彩空间过于抽象,我们不能够直接通过其值感知具体的色彩。 我们更习惯使用直观的方式来感知颜色,HSV 色彩空间提供了这样 的方式。 通过 HSV色彩空间,我们能够更加方便地通过色调、饱和度和亮度来感知颜色。 其实,

    2024年02月15日
    浏览(48)
  • OPENCV C++图像提取,图像处理,roi,阈值分割,连通区域筛选,边缘检测(以箱子边缘框选为例)

    本周有机会接触了一点opnev, 在此做一下记录, 最终以 框选出下图箱子为目的( 图片箱子为相机实拍结果,曝光有点低,会有亿点点暗 ), 本文会拆解步骤并附上图片, 完整的源码在最后.PS: 本文参考了好多大佬分享的理论知识, 在此先感谢大佬的分享~~ 首先是梳理一下流程, 下图是

    2024年02月07日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包