LeetCode 1572. 矩阵对角线元素的和

这篇具有很好参考价值的文章主要介绍了LeetCode 1572. 矩阵对角线元素的和。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【LetMeFly】1572.矩阵对角线元素的和

力扣题目链接:https://leetcode.cn/problems/matrix-diagonal-sum/

给你一个正方形矩阵 mat,请你返回矩阵对角线元素的和。

请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。

 

示例  1:

输入:mat = [[1,2,3],
            [4,5,6],
            [7,8,9]]
输出:25
解释:对角线的和为:1 + 5 + 9 + 3 + 7 = 25
请注意,元素 mat[1][1] = 5 只会被计算一次。

示例  2:

输入:mat = [[1,1,1,1],
            [1,1,1,1],
            [1,1,1,1],
            [1,1,1,1]]
输出:8

示例 3:

输入:mat = [[5]]
输出:5

 

提示:

  • n == mat.length == mat[i].length
  • 1 <= n <= 100
  • 1 <= mat[i][j] <= 100

方法一:模拟

假设 m a t mat mat的大小是 n × n n\times n n×n,则可以:

i i i 0 0 0 n − 1 n - 1 n1遍历 m a t mat mat的每一行, a n s ans ans加上这一行的 i i i n − i − 1 n - i - 1 ni1

最后,如果 n n n是奇数,则还需要减去对主副对角线重叠的元素 m a t [ ⌊ n 2 ⌋ ] [ ⌊ n 2 ⌋ ] mat[\lfloor\frac{n}{2}\rfloor][\lfloor\frac{n}{2}\rfloor] mat[⌊2n⌋][⌊2n⌋]

  • 时间复杂度 O ( n ) O(n) O(n),其中 s i z e ( m a t ) = n × n size(mat) = n\times n size(mat)=n×n
  • 空间复杂度 O ( 1 ) O(1) O(1)

AC代码

C++
class Solution {
public:
    int diagonalSum(vector<vector<int>>& mat) {
        int n = mat.size();
        int ans = 0;
        for (int i = 0; i < n; i++) {
            ans += mat[i][i] + mat[i][n - i - 1];
        }
        if (n % 2) {
            ans -= mat[n / 2][n / 2];
        }
        return ans;
    }
};
Python
# from typing import List

class Solution:
    def diagonalSum(self, mat: List[List[int]]) -> int:
        n = len(mat)
        ans = 0
        for i in range(n):
            ans += mat[i][i] + mat[i][n - i - 1]
        if n % 2:
            ans -= mat[n // 2][n // 2]
        return ans

同步发文于CSDN,原创不易,转载请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/132223172文章来源地址https://www.toymoban.com/news/detail-641868.html

到了这里,关于LeetCode 1572. 矩阵对角线元素的和的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【1572. 矩阵对角线元素的和】

    来源:力扣(LeetCode) 描述: 给你一个正方形矩阵 mat ,请你返回矩阵对角线元素的和。 请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。 示例 1: 示例 2: 示例 3: 提示: n == mat.length == mat[i].length 1 = n = 100 1 = mat[i][j] = 100 方法一:遍历矩阵 思路

    2024年02月12日
    浏览(39)
  • 1572. 矩阵对角线元素的和

    给你一个正方形矩阵 mat,请你返回矩阵对角线元素的和。 请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。 同时求对角线和副对角线上元素的和再减去重合的元素

    2024年02月13日
    浏览(38)
  • 【每日一题】1572. 矩阵对角线元素的和

    给你一个正方形矩阵 mat,请你返回矩阵对角线元素的和。 请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。 示例 1: 示例 2: 示例 3: 提示: n == mat.length == mat[i].length 1 = n = 100 1 = mat[i][j] = 100 思路:主对角线i=j,副对角线i+j=n-1。

    2024年02月13日
    浏览(50)
  • 【力扣每日一题】1572. 矩阵对角线元素的和 & 8.11打卡

    1572. 矩阵对角线元素的和 难度: 简单 描述: 给你一个正方形矩阵 mat,请你返回矩阵对角线元素的和。 请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。 返回合并后的二叉树。 注意: 合并过程必须从两个树的根节点开始。 示例 1: 输入:mat = [

    2024年02月12日
    浏览(35)
  • 【每日一题Day292】LC1572矩阵对角线元素的和 模拟

    思路 简单模拟,主对角线的元素横纵坐标相等,副对角线的元素横纵坐标相加为n-1,注意避免重复计算 实现 复杂度 时间复杂度: O ( log ⁡ n ) mathcal{O}(log n) O ( lo g n ) 空间复杂度: O ( 1 ) mathcal{O}(1) O ( 1 )

    2024年02月13日
    浏览(38)
  • Leetcode 1572.矩阵对角线元素之和

    给你一个正方形矩阵  mat ,请你返回矩阵对角线元素的和。 请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。 示例  1: 示例  2: 示例 3: 提示: n == mat.length == mat[i].length 1 = n = 100 1 = mat[i][j] = 100 通过次数 63.3K 提交次数 75.9K 通过率 83.3% 1.给一个

    2024年02月10日
    浏览(45)
  • 【LeetCode 算法】Matrix Diagonal Sum 矩阵对角线元素的和

    给你一个正方形矩阵 mat ,请你返回矩阵对角线元素的和。 请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。 n = = m a t . l e n g t h = = m a t [ i ] . l e n g t h 1 = n = 100 1 = m a t [ i ] [ j ] = 100 n == mat.length == mat[i].length\\\\ 1 = n = 100\\\\ 1 = mat[i][j] = 100 n == ma t . l

    2024年02月13日
    浏览(42)
  • 矩阵对角线元素的和

    题目: 给你一个正方形矩阵 mat ,请你返回矩阵对角线元素的和。 请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。 示例: 输入:mat = [[1,2,3],             [4,5,6],             [7,8,9]] 输出:25 解释:对角线的和为:1 + 5 + 9 + 3 + 7 = 25 请注意

    2024年02月15日
    浏览(53)
  • 输入一个n×n的矩阵,分别计算该矩阵主对角线元素与副对角线元素之和。

    输入格式: 输入包含n + 1行: 第一行为一个正整数n(1 = n = 10)。 第二行到第n + 1行,每行有n个整数,邻近两数之间用一个空格隔开。 输出格式: 两数之间用一个空格隔开。 输入样例: 4 2 3 4 1 5 6 2 1 7 1 8 3 1 6 1 1 输出样例: 17 5

    2024年02月11日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包