四元数快速入门【Quaternion】

这篇具有很好参考价值的文章主要介绍了四元数快速入门【Quaternion】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

四元数(Quaternion)是用于旋转和拉伸向量的数学运算符。 本文提供了一个概述,以帮助理解在空间导航等应用程序中对四元数的需求。

四元数的内积,计算机视觉,人工智能

推荐:用 NSDT场景设计器 快速搭建3D场景。

可以通过多种方式在空间中准确定位、移动和旋转物体。 更熟悉和更容易可视化的滚动(Roll)、俯仰(Pitch)和偏航(Yaw)表示是有局限性的,在某些情况下应该用更强大的四元数代替。 随着对象的位置和方向发生变化,称为四元数的数学工具可用于旋转和缩放原始矢量。

三维空间中的物体可以定位在一个坐标系中,三个数从坐标系的原点延伸到空间中的一点,创建一个位置 r=(x,y,z) 向量。 如果对象的位置发生变化,向量将位于新的位置并且可能具有新的长度。 我们需要一种方法来测量或计算两个向量之间的变化。

1、Roll/Pitch/Yaw表示法的问题

大多数读者可能都知道,在空间中旋转的物体可以用它们沿三个轴的旋转角度来描述。 空间中的任何旋转都可以用这些旋转的组合来描述。
四元数的内积,计算机视觉,人工智能

万向节提供偏航、滚动和俯仰运动。

旋转轴并不总是独立的,解也不总是唯一的。 两个万向节的平面可能会对齐,并且会发生称为万向节锁定(gimbal lock)的情况。 在万向节锁定中,三个万向节中的两个是平行或非常接近平行的,最初的三个自由度(偏航、俯仰和滚动)减少到两个自由度——两个旋转轴可以描述相同的旋转运动。 同时,失去了一个自由度,信息也消失了。 一旦发生万向节锁定,就不可能在没有外部参考的情况下重新定向轴。

四元数的内积,计算机视觉,人工智能

当绿色圆圈与红色圆圈对齐或接近对齐时发生万向节锁定

你可能还记得在有关阿波罗 13 号任务的电影中听到过万向节锁定这个词。 如果万向节锁定发生在爆炸之后,宇航员的惯性测量装置将无法追踪他们在天球中的位置,从而对他们本已绝望的处境产生负面影响。

现在来看看万向节锁背后的数学原理。

读者须知:为了保持在小型设备上的可读性,cos(x) 的所有实例都已替换为 Cx,sin(x) 的所有实例均已替换为 Sx。

围绕单个轴旋转一个矢量 r=(x,y,z) 需要一个旋转矩阵。 上图的三轴云台有三个轴对应三个旋转矩阵。

四元数的内积,计算机视觉,人工智能
四元数的内积,计算机视觉,人工智能
四元数的内积,计算机视觉,人工智能

上面的三个矩阵分别表示:绕x 轴 旋转角度 γ,绕y 轴 旋转角度 β,绕z 轴旋转角度 α 。

四元数的内积,计算机视觉,人工智能

上面显示的是三个独立的 3×3 变换矩阵。 (围绕 z-y-z 旋转 α、β、γ 角度的变换)

从数学上讲,3×3 旋转矩阵是三个连续旋转的乘积。
四元数的内积,计算机视觉,人工智能

3×3 矩阵连续相乘时会产生一个 3×3 矩阵。 上面显示的是围绕 z-y-z 旋转角度 α、β、γ 。

存在多个转换矩阵,它们可以以各种顺序应用。 十二个旋转序列可以分为两类:

  • 欧拉角:其中一个旋转轴重复(x-z-x,x-y-x,y-x-y,y-z-y,z-y-z,z-x-z)
  • 泰特-布赖恩角,围绕所有轴(x-z-y, x-y-z、y-x-z、y-z-x、z-y-x、z-x-y)旋转

我任意选择了 z-y-x 变换矩阵来处理下面的示例。

四元数的内积,计算机视觉,人工智能

上图是围绕α、β、γ旋转z-y-x的变换矩阵。

当使用 β =π/2 代入 z-y-x 变换矩阵时,万向节锁在我们的示例矩阵中在数学上变得明显(其他变换矩阵在不同条件下失败)。随着角度 β →π /2 以及 sin(β)→0 ,您可以在下面看到对矩阵的简化效果。
四元数的内积,计算机视觉,人工智能

上面的矩阵中将π /2 带入β ,得到
四元数的内积,计算机视觉,人工智能

可以看到,当 β 接近 π/2 时, cos(π/2) 导致矩阵中的几项变为零。

另一种看待问题的方法是采用原始变换矩阵(我再次选择 z-y-x)并使用三角恒等式将三角函数内的变量聚集在一起。 注意角度的初始相互依赖性。
四元数的内积,计算机视觉,人工智能

替换后,角度之间唯一存在的关系是 α + γ 。
四元数的内积,计算机视觉,人工智能

通过固定 β = π/2 ,我们已经消除了 α−γ 的所有情况,牺牲一定程度的自由度。

虽然很容易想象滚动、俯仰和偏航,但如果你正在设计一个能够自由指向空间中任何方向的系统,最终会遇到万向节锁定。

2、四元数

威廉·汉密尔顿于 1843 年发明了四元数,作为一种允许他对向量进行乘法和除法、旋转和拉伸的方法。

我在下面提出的内容旨在说明,但绝不是数学上严格的。 它应该足以让你在计算机科学和工程环境的入门级理解四元数。 对于数学课来说,这并不意味着就足够了。 如果你需要更深入的信息,加利福尼亚州立大学富勒顿分校物理学和数学教授 Alfonso Agnew 博士推荐了以下有关该主题的书籍:

  • 四元数和旋转序列:在轨道、航空航天和虚拟现实中的应用入门 (Kupiers)
  • Clifford 代数和旋量 (Lounesto)
  • 可视化四元数 (Hanson)

汉密尔顿的发现是,虽然没有明显的方法可以将两组三个数字相乘并除以得到三个数字(可能代表坐标的向量),但可以将两组四个数字相乘并相除并得到四个 数字。 四元数是两组四个数的商,由一个标量和一个向量组成。

四元数的内积,计算机视觉,人工智能
四元数的内积,计算机视觉,人工智能

四元数的内积,计算机视觉,人工智能

其中,
四元数的内积,计算机视觉,人工智能

为实数,且
四元数的内积,计算机视觉,人工智能

为四元数单位。

任意两点之间的方向可以用三个数表示,这三个数分别位于 (-1,1) 范围内,其总大小为 (-1 ≤ x ≤1, -1 ≤ y ≤ 1, -1 ≤ z ≤ 1)并且 √x2+y2+z^2 = 1 。这四个数字一起创建了一个描述旋转和距离的四元数。
四元数的内积,计算机视觉,人工智能

四元数提供旋转向量所需的信息,只需四个数字而不是旋转矩阵所需的九个数字。

如果你熟悉数学和矩阵符号,请跳至下面的四元数数学,并跳过接下来两节中复数和矩阵数学的复习。

3、复数

参见 AAC 教科书第 2 卷 — 第 2 章。

发明复数是为了解决没有实数解的问题。 在发明 √-1 之前 , x^2 = -1这类问题始终无解。 复数可以想象成位于一个平面上,数的实部沿水平轴表示,数的虚部沿垂直轴表示。 在笛卡尔坐标中,它们通常以类似于 x+yi 或 (x,y) 的形式表示。 两个复数可以相加、相减、相乘和相除。

相加:
四元数的内积,计算机视觉,人工智能

相减:

四元数的内积,计算机视觉,人工智能

相乘:
四元数的内积,计算机视觉,人工智能

相除:
四元数的内积,计算机视觉,人工智能

无缩放旋转:

四元数的内积,计算机视觉,人工智能

一个例子是 2+3i 逆时针旋转π/2 可以通过与 0+i 相乘得到:
四元数的内积,计算机视觉,人工智能
四元数的内积,计算机视觉,人工智能

欧拉开发了一种在复数极平面中旋转复数的方法,汉密尔顿以此为基础建立了他的想法。
四元数的内积,计算机视觉,人工智能

虽然这远非对复数主题的完整处理,但它通过以下方式为四元数提供了一个垫脚石:

  • 复数可以很容易地进行加、减、乘和除,而无需使用三角函数(尽管复数可以用极坐标形式表示或从极坐标形式分别用 cos 和 sin 分解为实部和虚部)。
  • 将复数乘以虚数单位“i”产生四分之一圈。 与四元数类似,将任意两个四元数单位相乘将导致围绕垂直于两个初始轴的轴旋转。

4、矩阵数学

  • 标量

标量是表示沿公共比例尺或轴的位置的数字。 标量变量没有应用于它们的特殊格式。

  • 向量

向量是一个有序数字的列表,描述了在特定方向上沿尺度的位置。 它被可视化为具有长度和方向的直线。 本文中矢量变量以粗体 r 显示,偶尔会使用上标箭头。 向量可以有两个或更多元素。
四元数的内积,计算机视觉,人工智能
四元数的内积,计算机视觉,人工智能

多个向量通过不同的变量名或下标来区分。

四元数的内积,计算机视觉,人工智能

或者

四元数的内积,计算机视觉,人工智能

  • 叉积

四元数的内积,计算机视觉,人工智能

  • 点积

四元数的内积,计算机视觉,人工智能

  • 长度

矢量的长度是从起点到终点的直线距离。 在数学上,它是单个元素平方和的平方根。

四元数的内积,计算机视觉,人工智能

  • 矩阵

矩阵是单个元素的数组,可以乘以向量以对其进行转换。 矩阵可以平移、旋转和缩放向量。 下面显示的是一个通用的 3×3 矩阵

四元数的内积,计算机视觉,人工智能

  • 矩阵应用于向量

四元数的内积,计算机视觉,人工智能

  • 旋转矩阵

旋转矩阵可以改变向量指向的方向,在空间中重新定向它们。 以下矩阵围绕笛卡尔轴旋转向量而不缩放它们。

四元数的内积,计算机视觉,人工智能四元数的内积,计算机视觉,人工智能

四元数的内积,计算机视觉,人工智能

  • 矩阵A与B相乘

四元数的内积,计算机视觉,人工智能

本节简要回顾向量和矩阵数学,并与下面的四元数规则进行对比。

5、四元数

如前所述,四元数由一个标量和一个向量组成。

四元数的内积,计算机视觉,人工智能

由于标量和向量都存在于四元数中,因此用于处理它们的数学规则是标量和向量数学的组合。
四元数的内积,计算机视觉,人工智能

  • (非交换)四元数乘法

两个四元数相乘的结果是一个新的四元数。

四元数的内积,计算机视觉,人工智能

  • 四元数内积

四元数内积是两个四元数对应的实系数相乘得到的标量。
四元数的内积,计算机视觉,人工智能

  • 四元数共轭(Conjugate)

每个四元数都有一个相反数,可以通过仅对四元数的向量部分的系数求反来找到。
四元数的内积,计算机视觉,人工智能

  • 四元数范数(Norm)

四元数通常应始终位于单位球面上。 范数应等于 1。如果你的四元数偏离单位球体,可以将四元数的每个元素除以范数以返回单位球体。

四元数的内积,计算机视觉,人工智能

  • 四元数转旋转矩阵

四元数的内积,计算机视觉,人工智能

6、结束语

四元数是使用一组有序的四个数字来描述 3D 空间中的方向或旋转的另一种方法。 它们能够唯一地描述围绕任意轴的任何三维旋转,并且不会受到万向节锁定的影响。 如果你的应用程序中的传感器或物体能够在 3D 空间中的任何位置移动,那么它们在跟踪物体方面优于欧拉角。


原文链接:四元数快速指南 - BimAnt文章来源地址https://www.toymoban.com/news/detail-642365.html

到了这里,关于四元数快速入门【Quaternion】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 四元数傅里叶变换(Quaternion Fourier Transforms) 在信号和图像处理中的应用

    引言: 信号和图像处理是现代科学和工程领域中非常重要的一个方向,它涉及到对信号和图像进行分析、压缩、增强和恢复等操作。传统的信号和图像处理方法主要依赖于傅里叶变换和滤波器等工具,但这些方法在处理复杂系统时存在一定的局限性。近年来,四元数傅里叶变

    2024年02月02日
    浏览(49)
  • pytorch3d旋转矩阵转四元数transforms.matrix_to_quaternion函数隐藏的大坑及其解决方法

      在pytorch旋转矩阵转四元数及各种旋转表示方式之间的转换实现代码这篇博客里,我提到可以使用pytorch3d实现批量旋转表示方法之间的转换。但是最近在使用它的matrix_to_quaternion函数的时候,发现了一个隐藏的巨大bug:它不会确保输出的四元数中的那个实数w恒为正。这样就

    2024年02月13日
    浏览(51)
  • ABB机器人欧拉角与四元数的相互转化以及旋转矩阵的求法

    做项目时用到ABB机器人,直接通过ABB内置的函数可以轻松实现四元数读数与欧拉角的相互转化。但实际项目需要从示教器读出相关位置并自行计算,尤其需要计算旋转矩阵。 本文以 ABB IRB120机器人 (不确定其他机器人是否与ABB机器人一致)为例如下姿态为例来描述上述几个量

    2024年02月03日
    浏览(57)
  • 车辆姿态表达:旋转矩阵、欧拉角、四元数的转换以及eigen、matlab、pathon方法实现

    旋转矩阵、欧拉角、四元数主要用于表示坐标系中的旋转关系,通过三者之间的转换可以减小一些算法的复杂度。 本文主要概述旋转矩阵、欧拉角、四元数的基本理论、三者之间的转换关系以及三者转换在eigen、matlab和pathon上的方法实现。 对于两个三维点 p1 、 p2 : p 1 ( x

    2023年04月11日
    浏览(47)
  • 机器人中欧拉角,偏航角、俯仰角、横滚角的自锁现象与四元数的来源于推导

    想要讲欧拉角,我们需要先讲物体的姿态与自由度。 什么是物体的位姿 为了描述物体(此处指的是我们的末端执行器)在空间中的位置,我们可以用一个3*1的位置矩阵去描述。 P ′ ′ = [ P X ′ ′ , P Y ′ ′ , P Z ′ ′ ] T P\\\'\\\'=[P_X\\\'\\\',P_Y\\\'\\\',P_Z\\\'\\\']^T P ′′ = [ P X ′′ ​ , P Y ′′ ​ ,

    2024年02月16日
    浏览(54)
  • 四元数

    传入一个向量,使物体旋转,如: 值得注意的是:Unity中组件Transform的Rotation实际上是Quaternion类型的 与上面功能类似,但更为简洁,如: 线性插值,与Mathf.Lerp差不多。 与transform.LookAt类似的是都是将其正方向指向目标方向,但是LookRotation可以做的跟更好 如: 值得注意的是:

    2024年02月15日
    浏览(34)
  • 四元数计算

    两个四元数相乘得到一个新的四元数,代表两个旋转量的叠加,相当于旋转 注意:旋转相对的坐标系,是物体自身坐标系 例如绕 自身y轴 转20度: 如果绕自身y轴转40度,那么就再乘一个q: 四元数乘向量返回一个新向量, 可以将指定向量旋转对应四元数的旋转量,相当于旋

    2024年02月09日
    浏览(42)
  • Unity之四元数计算

    模拟飞机发射不同类型子弹的方法,单发,双发,扇形,环形 用3D数学知识实现摄像机跟随效果 1.摄像机在人物斜后方,通过角度控制倾斜率 2.通过鼠标滚轮控制摄像机距离人物的距离(有最大最小限制) 3.摄像机看向任务头顶上方的一个位置(可调节) 4.Vector3.Lerp实现相机

    2024年01月19日
    浏览(46)
  • Unity 四元数与物体旋转

    由三个角度(x,y,z)组成 在特定坐标系下用于描述物体的旋转量 空间中的任意旋转都可以分解成绕三个互相垂直轴的三个旋转角组成的序列 欧拉角旋转约定——heading-pitch-bank 这是一种最常用的旋转序列约定——Y-X-Z约定 heading:物体绕自身的对象坐标系的Y轴旋转的角度 pitch:物体

    2024年01月18日
    浏览(59)
  • 数学概率 | 旋转矩阵、欧拉角、四元数

    目录 一,旋转矩阵 二维旋转矩阵 三维旋转矩阵 二,欧拉角 三,四元数 四,矩阵、欧拉角、四元数相互转换 四元数转矩阵 矩阵转四元数 欧拉角转矩阵 矩阵转欧拉角 欧拉角转四元数 四元数转欧拉角 二维旋转矩阵 R() =  推导,以二维平面为例旋转:  = cos( + ) = coscos - si

    2024年02月06日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包