onnx-graphsurgeon----ONNX计算图修改神器

这篇具有很好参考价值的文章主要介绍了onnx-graphsurgeon----ONNX计算图修改神器。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0. 简介

作为深度学习用户,经常会听到ONNX、TensorRT等一系列常用的文件保存格式。而对于ONNX而言,经常我们会发现在利用TensorRT部署到NVIDIA显卡上时,onnx模型的计算图不好修改,在以前的操作中很多时候大佬是将onnx转换成ncnn的.paran和.bin文件后对.param的计算图做调整的。在这篇文章《TensorRT 入门(5) TensorRT官方文档浏览》和这篇文章《TensorRT 开始》中,作者都提到了可用 ONNX GraphSurgeon 修改onnx模型并完成模型的修改,以适用于TensorRT模型中。这是onnx-graphsurgeon官网的链接,当中基本需要使用的内容都已经全部写明了。

1. API官网以及实现

对于onnx-graphsurgeon而言,内网和外网的资料都相对较少,而最近看到了令狐少侠有对onnx-graphsurgeon的API进行了翻译,这里就不详细的去说了。有兴趣的同学可以看一下博客或者直接阅读官网的内容,当中的细节还是比较简单的,具体操作也比较简单
onnx-graphsurgeon----ONNX计算图修改神器,深度学习,python,人工智能

1.1 ONNX模型

import onnx_graphsurgeon as gs
import numpy as np
import onnx

# Register functions to make graph generation easier
@gs.Graph.register()
def min(self, *args):
    return self.layer(op="Min", inputs=args, outputs=["min_out"])[0]

@gs.Graph.register()
def max(self, *args):
    return self.layer(op="Max", inputs=args, outputs=["max_out"])[0]

@gs.Graph.register()
def identity(self, inp):
    return self.layer(op="Identity", inputs=[inp], outputs=["identity_out"])[0]


# Generate the graph
graph = gs.Graph()

graph.inputs = [gs.Variable("input", shape=(4, 4), dtype=np.float32)]

# Clip values to [0, 6]
MIN_VAL = np.array(0, np.float32)
MAX_VAL = np.array(6, np.float32)

# Add identity nodes to make the graph structure a bit more interesting
inp = graph.identity(graph.inputs[0])
max_out = graph.max(graph.min(inp, MAX_VAL), MIN_VAL)
graph.outputs = [graph.identity(max_out), ]

# Graph outputs must include dtype information
graph.outputs[0].to_variable(dtype=np.float32, shape=(4, 4))

onnx.save(gs.export_onnx(graph), "model.onnx")

然后netron查看如下
onnx-graphsurgeon----ONNX计算图修改神器,深度学习,python,人工智能
现在就是想使用onnx_graphsurgeon这个工具将OP Min和Max整合成一个叫Clip的心OP这样即使部署时也只需要写个Clip插件就好了,当然本文只是为了演示,Clip OP已经TensorRT支持了。

1.2 修改代码

方法非常简单,先把你想要合并的OP和外界所有联系切断,然后替换成新的ONNX OP保存就好了。本质上就是把Min和Identity断开,Min和c2常数断开,Max和c5常数断开,Max和下面那个Identity断开,然后替换成新的OP就好

import onnx_graphsurgeon as gs
import numpy as np
import onnx


# Here we'll register a function to do all the subgraph-replacement heavy-lifting.
# NOTE: Since registered functions are entirely reusable, it may be a good idea to
# refactor them into a separate module so you can use them across all your models.
# 这里写成函数是为了,万一还需要这样的替换操作就可以重复利用了
@gs.Graph.register()
def replace_with_clip(self, inputs, outputs):
    # Disconnect output nodes of all input tensors
    for inp in inputs:
        inp.outputs.clear()

    # Disconnet input nodes of all output tensors
    for out in outputs:
        out.inputs.clear()

    # Insert the new node.
    return self.layer(op="Clip", inputs=inputs, outputs=outputs)


# Now we'll do the actual replacement
# 导入onnx模型
graph = gs.import_onnx(onnx.load("model.onnx"))

tmap = graph.tensors()
# You can figure out the input and output tensors using Netron. In our case:
# Inputs: [inp, MIN_VAL, MAX_VAL]
# Outputs: [max_out]
# 子图的需要断开的输入name和子图需要断开的输出name
inputs = [tmap["identity_out_0"], tmap["onnx_graphsurgeon_constant_5"], tmap["onnx_graphsurgeon_constant_2"]]
outputs = [tmap["max_out_6"]]

# 断开并替换成新的名叫Clip的 OP
graph.replace_with_clip(inputs, outputs)

# Remove the now-dangling subgraph.
graph.cleanup().toposort()

# That's it!
onnx.save(gs.export_onnx(graph), "replaced.onnx")

onnx-graphsurgeon----ONNX计算图修改神器,深度学习,python,人工智能

2. ONNX 转成 TRT 模型详细例子

trtexec 将 ONNX 转成 TensorRT engine:

export PATH=/usr/local/TensorRT/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/TensorRT/lib:$LD_LIBRARY_PATH

trtexec --onnx=rvm_mobilenetv3_fp32.onnx --workspace=64 --saveEngine=rvm_mobilenetv3_fp32.engine --verbose

发生问题:

[01/08/2022-20:20:36] [E] [TRT] ModelImporter.cpp:773: While parsing node number 3 [Resize -> "389"]:
[01/08/2022-20:20:36] [E] [TRT] ModelImporter.cpp:774: --- Begin node ---
[01/08/2022-20:20:36] [E] [TRT] ModelImporter.cpp:775: input: "src"
input: "386"
input: "388"
output: "389"
name: "Resize_3"
op_type: "Resize"
attribute {
  name: "coordinate_transformation_mode"
  s: "pytorch_half_pixel"
  type: STRING
}
attribute {
  name: "cubic_coeff_a"
  f: -0.75
  type: FLOAT
}
attribute {
  name: "mode"
  s: "linear"
  type: STRING
}
attribute {
  name: "nearest_mode"
  s: "floor"
  type: STRING
}

[01/08/2022-20:20:36] [E] [TRT] ModelImporter.cpp:776: --- End node ---
[01/08/2022-20:20:36] [E] [TRT] ModelImporter.cpp:779: ERROR: builtin_op_importers.cpp:3608 In function importResize:
[8] Assertion failed: scales.is_weights() && "Resize scales must be an initializer!"

这时,需要动手改动模型了。

首先,安装必要工具:

snap install netron
pip install onnx-simplifier
pip install onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com

之后,Netron 查看模型 Resize_3 节点:

onnx-graphsurgeon----ONNX计算图修改神器,深度学习,python,人工智能文章来源地址https://www.toymoban.com/news/detail-642433.html

…详情请参照古月居

到了这里,关于onnx-graphsurgeon----ONNX计算图修改神器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习】pytorch pth模型转为onnx模型后出现冗余节点“identity”,onnx模型的冗余节点“identity”

    onnx模型的冗余节点“identity”如下图。 首先,确保您已经安装了onnx-simplifier库: 然后,您可以按照以下方式使用onnx-simplifier库: 通过这个过程,onnx-simplifier库将会检测和移除不必要的\\\"identity\\\"节点,从而减少模型中的冗余。 请注意,使用onnx-simplifier库可能会改变模型的计算

    2024年02月09日
    浏览(43)
  • ONNX Runtime 加速深度学习(C++ 、python)详细介绍

    本文在 https://blog.csdn.net/u013250861/article/details/127829944 基础上进行了更改,感谢原作! ONNXRuntime(Open Neural Network Exchange)是微软推出的一款针对ONNX模型格式的推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONN

    2024年02月15日
    浏览(51)
  • 深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)

    点击下方 卡片 ,关注“ 自动驾驶之心 ”公众号 ADAS巨卷干货,即可获取 今天自动驾驶之心很荣幸邀请到 逻辑牛 分享深度学习部署的入门介绍,带大家盘一盘ONNX、NCNN、OpenVINO等框架的使用场景、框架特点及代码示例。如果您有相关工作需要分享,请在文末联系我们! 点击

    2024年02月08日
    浏览(45)
  • onnxruntime推理时切换CPU/GPU以及修改onnx输入输出为动态

    前言 onnx模型作为中间模型,相较于pytorch直接推理,是有加速度效果的,且推理代码简单,不需要load各种网络。最近某些项目因为显存不够,onnxruntime推理时切换CPU/GPU,实现某些模型在CPU上推理,某些在GPU上推理。 查了一些别人的文章发现很多人都说onnxruntime推理没法像py

    2024年02月12日
    浏览(51)
  • 【深度学习】【Opencv】【GPU】python/C++调用onnx模型【基础】

    提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 OpenCV是一个基于BSD许可发行的跨平台计算机视觉和机器学习软件库(开源),可以运行在Linux、Windows、Android和Mac OS操作系统上。可以将pytorch中训练好的模型使用ONNX导出,再使用opencv中的dnn模块直接进行

    2024年02月04日
    浏览(52)
  • 【深度学习】【Opencv】【CPU】Python/C++调用onnx模型【基础】

    提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 OpenCV是一个基于BSD许可发行的跨平台计算机视觉和机器学习软件库(开源),可以运行在Linux、Windows、Android和Mac OS操作系统上。可以将pytorch中训练好的模型使用ONNX导出,再使用opencv中的dnn模块直接进行

    2024年02月04日
    浏览(43)
  • 【深度学习】RTX2060 2080如何安装CUDA,如何使用onnx runtime

    RTX 2060虽然是一款较早的显卡型号,但仍然广泛使用。对于Python开发者来说,配置CUDA 10是非常关键的,尤其是在深度学习和GPU加速计算任务中。本文将为你提供一个详细的配置指南。 首先,确保你已经安装了最新版本的NVIDIA显卡驱动。你可以通过访问NVIDIA官方网站来下载和安

    2024年01月17日
    浏览(39)
  • 【深度学习】SDXL tensorRT 推理,Stable Diffusion 转onnx,转TensorRT

    juggernautXL_version6Rundiffusion.safetensors文件是pth pytroch文件,需要先转为diffusers 的文件结构。 FP16在后面不好操作,所以最好先是FP32: 有了diffusers 的文件结构,就可以转onnx文件。 项目:https://huggingface.co/docs/diffusers/optimization/onnx stabilityai/stable-diffusion-xl-1.0-tensorrt 项目:https://hug

    2024年01月19日
    浏览(54)
  • ONNX:C++通过onnxruntime使用.onnx模型进行前向计算【下载的onnxruntime是编译好的库文件,可直接使用】

    微软联合Facebook等在2017年搞了个深度学习以及机器学习模型的格式标准–ONNX,旨在将所有模型格式统一为一致,更方便地实现模型部署。现在大多数的深度学习框架都支持ONNX模型转出并提供相应的导出接口。 ONNXRuntime(Open Neural Network Exchange)是微软推出的一款针对ONNX模型格式

    2024年02月15日
    浏览(44)
  • pytorch自定义算子并导出onnx计算图详细代码教程

    解决:     # enable_onnx_checker=False 更改为:     operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK pytorch自定义算子并导出onnx计算图详细代码教程_operatorexporttypes_蛇皮小娃娃的博客-CSDN博客  

    2024年02月10日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包