200个经典面试题(算法思想+数据结构)_1

这篇具有很好参考价值的文章主要介绍了200个经典面试题(算法思想+数据结构)_1。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

斐波那契数列

1. 爬楼梯

70. Climbing Stairs (Easy)

题目描述:有 N 阶楼梯,每次可以上一阶或者两阶,求有多少种上楼梯的方法。

定义一个数组 dp 存储上楼梯的方法数(为了方便讨论,数组下标从 1 开始),dp[i] 表示走到第 i 个楼梯的方法数目。

第 i 个楼梯可以从第 i-1 和 i-2 个楼梯再走一步到达,走到第 i 个楼梯的方法数为走到第 i-1 和第 i-2 个楼梯的方法数之和。


考虑到 dp[i] 只与 dp[i - 1] 和 dp[i - 2] 有关,因此可以只用两个变量来存储 dp[i - 1] 和 dp[i - 2],使得原来的 O(N) 空间复杂度优化为 O(1) 复杂度。

public int climbStairs(int n) {
    if (n <= 2) {
        return n;
    }
    int pre2 = 1, pre1 = 2;
    for (int i = 2; i < n; i++) {
        int cur = pre1 + pre2;
        pre2 = pre1;
        pre1 = cur;
    }
    return pre1;
}

2. 强盗抢劫

198. House Robber (Easy)

题目描述:抢劫一排住户,但是不能抢邻近的住户,求最大抢劫量。

定义 dp 数组用来存储最大的抢劫量,其中 dp[i] 表示抢到第 i 个住户时的最大抢劫量。

由于不能抢劫邻近住户,如果抢劫了第 i -1 个住户,那么就不能再抢劫第 i 个住户,所以


public int rob(int[] nums) {
    int pre2 = 0, pre1 = 0;
    for (int i = 0; i < nums.length; i++) {
        int cur = Math.max(pre2 + nums[i], pre1);
        pre2 = pre1;
        pre1 = cur;
    }
    return pre1;
}

3. 强盗在环形街区抢劫

213. House Robber II (Medium)

public int rob(int[] nums) {
    if (nums == null || nums.length == 0) {
        return 0;
    }
    int n = nums.length;
    if (n == 1) {
        return nums[0];
    }
    return Math.max(rob(nums, 0, n - 2), rob(nums, 1, n - 1));
}

private int rob(int[] nums, int first, int last) {
    int pre2 = 0, pre1 = 0;
    for (int i = first; i <= last; i++) {
        int cur = Math.max(pre1, pre2 + nums[i]);
        pre2 = pre1;
        pre1 = cur;
    }
    return pre1;
}

4. 信件错排

题目描述:有 N 个 信 和 信封,它们被打乱,求错误装信方式的数量。

定义一个数组 dp 存储错误方式数量,dp[i] 表示前 i 个信和信封的错误方式数量。假设第 i 个信装到第 j 个信封里面,而第 j 个信装到第 k 个信封里面。根据 i 和 k 是否相等,有两种情况:

  • i==k,交换 i 和 j 的信后,它们的信和信封在正确的位置,但是其余 i-2 封信有 dp[i-2] 种错误装信的方式。由于 j 有 i-1 种取值,因此共有 (i-1)*dp[i-2] 种错误装信方式。
  • i != k,交换 i 和 j 的信后,第 i 个信和信封在正确的位置,其余 i-1 封信有 dp[i-1] 种错误装信方式。由于 j 有 i-1 种取值,因此共有 (i-1)*dp[i-1] 种错误装信方式。

综上所述,错误装信数量方式数量为:


5. 母牛生产

题目描述:假设农场中成熟的母牛每年都会生 1 头小母牛,并且永远不会死。第一年有 1 只小母牛,从第二年开始,母牛开始生小母牛。每只小母牛 3 年之后成熟又可以生小母牛。给定整数 N,求 N 年后牛的数量。

第 i 年成熟的牛的数量为:


矩阵路径

1. 矩阵的最小路径和

64. Minimum Path Sum (Medium)

[[1,3,1],
 [1,5,1],
 [4,2,1]]
Given the above grid map, return 7. Because the path 1→3→1→1→1 minimizes the sum.

题目描述:求从矩阵的左上角到右下角的最小路径和,每次只能向右和向下移动。

public int minPathSum(int[][] grid) {
    if (grid.length == 0 || grid[0].length == 0) {
        return 0;
    }
    int m = grid.length, n = grid[0].length;
    int[] dp = new int[n];
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            if (j == 0) {
                dp[j] = dp[j];        // 只能从上侧走到该位置
            } else if (i == 0) {
                dp[j] = dp[j - 1];    // 只能从左侧走到该位置
            } else {
                dp[j] = Math.min(dp[j - 1], dp[j]);
            }
            dp[j] += grid[i][j];
        }
    }
    return dp[n - 1];
}

2. 矩阵的总路径数

62. Unique Paths (Medium)

题目描述:统计从矩阵左上角到右下角的路径总数,每次只能向右或者向下移动。


public int uniquePaths(int m, int n) {
    int[] dp = new int[n];
    Arrays.fill(dp, 1);
    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            dp[j] = dp[j] + dp[j - 1];
        }
    }
    return dp[n - 1];
}

也可以直接用数学公式求解,这是一个组合问题。机器人总共移动的次数 S=m+n-2,向下移动的次数 D=m-1,那么问题可以看成从 S 中取出 D 个位置的组合数量,这个问题的解为 C(S, D)。

public int uniquePaths(int m, int n) {
    int S = m + n - 2;  // 总共的移动次数
    int D = m - 1;      // 向下的移动次数
    long ret = 1;
    for (int i = 1; i <= D; i++) {
        ret = ret * (S - D + i) / i;
    }
    return (int) ret;
}

数组区间

1. 数组区间和

303. Range Sum Query - Immutable (Easy)

Given nums = [-2, 0, 3, -5, 2, -1]

sumRange(0, 2) -> 1
sumRange(2, 5) -> -1
sumRange(0, 5) -> -3

求区间 i ~ j 的和,可以转换为 sum[j + 1] - sum[i],其中 sum[i] 为 0 ~ i - 1 的和。

class NumArray {

    private int[] sums;

    public NumArray(int[] nums) {
        sums = new int[nums.length + 1];
        for (int i = 1; i <= nums.length; i++) {
            sums[i] = sums[i - 1] + nums[i - 1];
        }
    }

    public int sumRange(int i, int j) {
        return sums[j + 1] - sums[i];
    }
}

2. 数组中等差递增子区间的个数

413. Arithmetic Slices (Medium)

A = [0, 1, 2, 3, 4]

return: 6, for 3 arithmetic slices in A:

[0, 1, 2],
[1, 2, 3],
[0, 1, 2, 3],
[0, 1, 2, 3, 4],
[ 1, 2, 3, 4],
[2, 3, 4]

dp[i] 表示以 A[i] 为结尾的等差递增子区间的个数。

当 A[i] - A[i-1] == A[i-1] - A[i-2],那么 [A[i-2], A[i-1], A[i]] 构成一个等差递增子区间。而且在以 A[i-1] 为结尾的递增子区间的后面再加上一个 A[i],一样可以构成新的递增子区间。

dp[2] = 1
    [0, 1, 2]
dp[3] = dp[2] + 1 = 2
    [0, 1, 2, 3], // [0, 1, 2] 之后加一个 3
    [1, 2, 3]     // 新的递增子区间
dp[4] = dp[3] + 1 = 3
    [0, 1, 2, 3, 4], // [0, 1, 2, 3] 之后加一个 4
    [1, 2, 3, 4],    // [1, 2, 3] 之后加一个 4
    [2, 3, 4]        // 新的递增子区间

综上,在 A[i] - A[i-1] == A[i-1] - A[i-2] 时,dp[i] = dp[i-1] + 1。

因为递增子区间不一定以最后一个元素为结尾,可以是任意一个元素结尾,因此需要返回 dp 数组累加的结果。

public int numberOfArithmeticSlices(int[] A) {
    if (A == null || A.length == 0) {
        return 0;
    }
    int n = A.length;
    int[] dp = new int[n];
    for (int i = 2; i < n; i++) {
        if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
            dp[i] = dp[i - 1] + 1;
        }
    }
    int total = 0;
    for (int cnt : dp) {
        total += cnt;
    }
    return total;
}

分割整数

1. 分割整数的最大乘积

343. Integer Break (Medim)

题目描述:For example, given n = 2, return 1 (2 = 1 + 1); given n = 10, return 36 (10 = 3 + 3 + 4).

public int integerBreak(int n) {
    int[] dp = new int[n + 1];
    dp[1] = 1;
    for (int i = 2; i <= n; i++) {
        for (int j = 1; j <= i - 1; j++) {
            dp[i] = Math.max(dp[i], Math.max(j * dp[i - j], j * (i - j)));
        }
    }
    return dp[n];
}

2. 按平方数来分割整数

279. Perfect Squares(Medium)

题目描述:For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.

public int numSquares(int n) {
    List<Integer> squareList = generateSquareList(n);
    int[] dp = new int[n + 1];
    for (int i = 1; i <= n; i++) {
        int min = Integer.MAX_VALUE;
        for (int square : squareList) {
            if (square > i) {
                break;
            }
            min = Math.min(min, dp[i - square] + 1);
        }
        dp[i] = min;
    }
    return dp[n];
}

private List<Integer> generateSquareList(int n) {
    List<Integer> squareList = new ArrayList<>();
    int diff = 3;
    int square = 1;
    while (square <= n) {
        squareList.add(square);
        square += diff;
        diff += 2;
    }
    return squareList;
}

3. 分割整数构成字母字符串

91. Decode Ways (Medium)

题目描述:Given encoded message “12”, it could be decoded as “AB” (1 2) or “L” (12).

public int numDecodings(String s) {
    if (s == null || s.length() == 0) {
        return 0;
    }
    int n = s.length();
    int[] dp = new int[n + 1];
    dp[0] = 1;
    dp[1] = s.charAt(0) == '0' ? 0 : 1;
    for (int i = 2; i <= n; i++) {
        int one = Integer.valueOf(s.substring(i - 1, i));
        if (one != 0) {
            dp[i] += dp[i - 1];
        }
        if (s.charAt(i - 2) == '0') {
            continue;
        }
        int two = Integer.valueOf(s.substring(i - 2, i));
        if (two <= 26) {
            dp[i] += dp[i - 2];
        }
    }
    return dp[n];
}

最长递增子序列

已知一个序列 {S1, S2,…,Sn},取出若干数组成新的序列 {Si1, Si2,…, Sim},其中 i1、i2 … im 保持递增,即新序列中各个数仍然保持原数列中的先后顺序,称新序列为原序列的一个 子序列

如果在子序列中,当下标 ix > iy 时,Six > Siy,称子序列为原序列的一个 递增子序列

定义一个数组 dp 存储最长递增子序列的长度,dp[n] 表示以 Sn 结尾的序列的最长递增子序列长度。对于一个递增子序列 {Si1, Si2,…,Sim},如果 im < n 并且 Sim < Sn,此时 {Si1, Si2,…, Sim, Sn} 为一个递增子序列,递增子序列的长度增加 1。满足上述条件的递增子序列中,长度最长的那个递增子序列就是要找的,在长度最长的递增子序列上加上 Sn 就构成了以 Sn 为结尾的最长递增子序列。因此 dp[n] = max{ dp[i]+1 | Si < Sn && i < n} 。

因为在求 dp[n] 时可能无法找到一个满足条件的递增子序列,此时 {Sn} 就构成了递增子序列,需要对前面的求解方程做修改,令 dp[n] 最小为 1,即:


对于一个长度为 N 的序列,最长递增子序列并不一定会以 SN 为结尾,因此 dp[N] 不是序列的最长递增子序列的长度,需要遍历 dp 数组找出最大值才是所要的结果,max{ dp[i] | 1 <= i <= N} 即为所求。

1. 最长递增子序列

public int lengthOfLIS(int[] nums) {
    int n = nums.length;
    int[] dp = new int[n];
    for (int i = 0; i < n; i++) {
        int max = 1;
        for (int j = 0; j < i; j++) {
            if (nums[i] > nums[j]) {
                max = Math.max(max, dp[j] + 1);
            }
        }
        dp[i] = max;
    }
    return Arrays.stream(dp).max().orElse(0);
}

使用 Stream 求最大值会导致运行时间过长,可以改成以下形式:

int ret = 0;
for (int i = 0; i < n; i++) {
    ret = Math.max(ret, dp[i]);
}
return ret;

以上解法的时间复杂度为 O(N2),可以使用二分查找将时间复杂度降低为 O(NlogN)。

定义一个 tails 数组,其中 tails[i] 存储长度为 i + 1 的最长递增子序列的最后一个元素。对于一个元素 x,

  • 如果它大于 tails 数组所有的值,那么把它添加到 tails 后面,表示最长递增子序列长度加 1;
  • 如果 tails[i-1] < x <= tails[i],那么更新 tails[i] = x。

例如对于数组 [4,3,6,5],有:

tails      len      num
[]         0        4
[4]        1        3
[3]        1        6
[3,6]      2        5
[3,5]      2        null

可以看出 tails 数组保持有序,因此在查找 Si 位于 tails 数组的位置时就可以使用二分查找。

public int lengthOfLIS(int[] nums) {
    int n = nums.length;
    int[] tails = new int[n];
    int len = 0;
    for (int num : nums) {
        int index = binarySearch(tails, len, num);
        tails[index] = num;
        if (index == len) {
            len++;
        }
    }
    return len;
}

private int binarySearch(int[] tails, int len, int key) {
    int l = 0, h = len;
    while (l < h) {
        int mid = l + (h - l) / 2;
        if (tails[mid] == key) {
            return mid;
        } else if (tails[mid] > key) {
            h = mid;
        } else {
            l = mid + 1;
        }
    }
    return l;
}

2. 一组整数对能够构成的最长链

Input: [[1,2], [2,3], [3,4]]
Output: 2
Explanation: The longest chain is [1,2] -> [3,4]

题目描述:对于 (a, b) 和 (c, d) ,如果 b < c,则它们可以构成一条链。

public int findLongestChain(int[][] pairs) {
    if (pairs == null || pairs.length == 0) {
        return 0;
    }
    Arrays.sort(pairs, (a, b) -> (a[0] - b[0]));
    int n = pairs.length;
    int[] dp = new int[n];
    Arrays.fill(dp, 1);
    for (int i = 1; i < n; i++) {
        for (int j = 0; j < i; j++) {
            if (pairs[j][1] < pairs[i][0]) {
                dp[i] = Math.max(dp[i], dp[j] + 1);
            }
        }
    }
    return Arrays.stream(dp).max().orElse(0);
}

3. 最长摆动子序列

Input: [1,7,4,9,2,5]
Output: 6
The entire sequence is a wiggle sequence.

Input: [1,17,5,10,13,15,10,5,16,8]
Output: 7
There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8].

Input: [1,2,3,4,5,6,7,8,9]
Output: 2

要求:使用 O(N) 时间复杂度求解。

public int wiggleMaxLength(int[] nums) {
    if (nums == null || nums.length == 0) {
        return 0;
    }
    int up = 1, down = 1;
    for (int i = 1; i < nums.length; i++) {
        if (nums[i] > nums[i - 1]) {
            up = down + 1;
        } else if (nums[i] < nums[i - 1]) {
            down = up + 1;
        }
    }
    return Math.max(up, down);
}

最长公共子序列

对于两个子序列 S1 和 S2,找出它们最长的公共子序列。

定义一个二维数组 dp 用来存储最长公共子序列的长度,其中 dp[i][j] 表示 S1 的前 i 个字符与 S2 的前 j 个字符最长公共子序列的长度。考虑 S1i 与 S2j 值是否相等,分为两种情况:

  • 当 S1i==S2j 时,那么就能在 S1 的前 i-1 个字符与 S2 的前 j-1 个字符最长公共子序列的基础上再加上 S1i 这个值,最长公共子序列长度加 1,即 dp[i][j] = dp[i-1][j-1] + 1。
  • 当 S1i != S2j 时,此时最长公共子序列为 S1 的前 i-1 个字符和 S2 的前 j 个字符最长公共子序列,或者 S1 的前 i 个字符和 S2 的前 j-1 个字符最长公共子序列,取它们的最大者,即 dp[i][j] = max{ dp[i-1][j], dp[i][j-1] }。

综上,最长公共子序列的状态转移方程为:


对于长度为 N 的序列 S1 和长度为 M 的序列 S2,dp[N][M] 就是序列 S1 和序列 S2 的最长公共子序列长度。

与最长递增子序列相比,最长公共子序列有以下不同点:

  • 针对的是两个序列,求它们的最长公共子序列。
  • 在最长递增子序列中,dp[i] 表示以 Si 为结尾的最长递增子序列长度,子序列必须包含 Si ;在最长公共子序列中,dp[i][j] 表示 S1 中前 i 个字符与 S2 中前 j 个字符的最长公共子序列长度,不一定包含 S1i 和 S2j
  • 在求最终解时,最长公共子序列中 dp[N][M] 就是最终解,而最长递增子序列中 dp[N] 不是最终解,因为以 SN 为结尾的最长递增子序列不一定是整个序列最长递增子序列,需要遍历一遍 dp 数组找到最大者。

1. 最长公共子序列

    public int longestCommonSubsequence(String text1, String text2) {
        int n1 = text1.length(), n2 = text2.length();
        int[][] dp = new int[n1 + 1][n2 + 1];
        for (int i = 1; i <= n1; i++) {
            for (int j = 1; j <= n2; j++) {
                if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[n1][n2];
    }

0-1 背包

有一个容量为 N 的背包,要用这个背包装下物品的价值最大,这些物品有两个属性:体积 w 和价值 v。

定义一个二维数组 dp 存储最大价值,其中 dp[i][j] 表示前 i 件物品体积不超过 j 的情况下能达到的最大价值。设第 i 件物品体积为 w,价值为 v,根据第 i 件物品是否添加到背包中,可以分两种情况讨论:

  • 第 i 件物品没添加到背包,总体积不超过 j 的前 i 件物品的最大价值就是总体积不超过 j 的前 i-1 件物品的最大价值,dp[i][j] = dp[i-1][j]。
  • 第 i 件物品添加到背包中,dp[i][j] = dp[i-1][j-w] + v。

第 i 件物品可添加也可以不添加,取决于哪种情况下最大价值更大。因此,0-1 背包的状态转移方程为:


// W 为背包总体积
// N 为物品数量
// weights 数组存储 N 个物品的重量
// values 数组存储 N 个物品的价值
public int knapsack(int W, int N, int[] weights, int[] values) {
    int[][] dp = new int[N + 1][W + 1];
    for (int i = 1; i <= N; i++) {
        int w = weights[i - 1], v = values[i - 1];
        for (int j = 1; j <= W; j++) {
            if (j >= w) {
                dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - w] + v);
            } else {
                dp[i][j] = dp[i - 1][j];
            }
        }
    }
    return dp[N][W];
}

空间优化

在程序实现时可以对 0-1 背包做优化。观察状态转移方程可以知道,前 i 件物品的状态仅与前 i-1 件物品的状态有关,因此可以将 dp 定义为一维数组,其中 dp[j] 既可以表示 dp[i-1][j] 也可以表示 dp[i][j]。此时,


因为 dp[j-w] 表示 dp[i-1][j-w],因此不能先求 dp[i][j-w],防止将 dp[i-1][j-w] 覆盖。也就是说要先计算 dp[i][j] 再计算 dp[i][j-w],在程序实现时需要按倒序来循环求解。

public int knapsack(int W, int N, int[] weights, int[] values) {
    int[] dp = new int[W + 1];
    for (int i = 1; i <= N; i++) {
        int w = weights[i - 1], v = values[i - 1];
        for (int j = W; j >= 1; j--) {
            if (j >= w) {
                dp[j] = Math.max(dp[j], dp[j - w] + v);
            }
        }
    }
    return dp[W];
}

无法使用贪心算法的解释

0-1 背包问题无法使用贪心算法来求解,也就是说不能按照先添加性价比最高的物品来达到最优,这是因为这种方式可能造成背包空间的浪费,从而无法达到最优。考虑下面的物品和一个容量为 5 的背包,如果先添加物品 0 再添加物品 1,那么只能存放的价值为 16,浪费了大小为 2 的空间。最优的方式是存放物品 1 和物品 2,价值为 22.

id w v v/w
0 1 6 6
1 2 10 5
2 3 12 4

变种

  • 完全背包:物品数量为无限个

  • 多重背包:物品数量有限制

  • 多维费用背包:物品不仅有重量,还有体积,同时考虑这两种限制

  • 其它:物品之间相互约束或者依赖

1. 划分数组为和相等的两部分

Input: [1, 5, 11, 5]

Output: true

Explanation: The array can be partitioned as [1, 5, 5] and [11].

可以看成一个背包大小为 sum/2 的 0-1 背包问题。

public boolean canPartition(int[] nums) {
    int sum = computeArraySum(nums);
    if (sum % 2 != 0) {
        return false;
    }
    int W = sum / 2;
    boolean[] dp = new boolean[W + 1];
    dp[0] = true;
    for (int num : nums) {                 // 0-1 背包一个物品只能用一次
        for (int i = W; i >= num; i--) {   // 从后往前,先计算 dp[i] 再计算 dp[i-num]
            dp[i] = dp[i] || dp[i - num];
        }
    }
    return dp[W];
}

private int computeArraySum(int[] nums) {
    int sum = 0;
    for (int num : nums) {
        sum += num;
    }
    return sum;
}

2. 改变一组数的正负号使得它们的和为一给定数

Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation:

-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3

There are 5 ways to assign symbols to make the sum of nums be target 3.

该问题可以转换为 Subset Sum 问题,从而使用 0-1 背包的方法来求解。

可以将这组数看成两部分,P 和 N,其中 P 使用正号,N 使用负号,有以下推导:

                  sum(P) - sum(N) = target
sum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)
                       2 * sum(P) = target + sum(nums)

因此只要找到一个子集,令它们都取正号,并且和等于 (target + sum(nums))/2,就证明存在解。

public int findTargetSumWays(int[] nums, int S) {
    int sum = computeArraySum(nums);
    if (sum < S || (sum + S) % 2 == 1) {
        return 0;
    }
    int W = (sum + S) / 2;
    int[] dp = new int[W + 1];
    dp[0] = 1;
    for (int num : nums) {
        for (int i = W; i >= num; i--) {
            dp[i] = dp[i] + dp[i - num];
        }
    }
    return dp[W];
}

private int computeArraySum(int[] nums) {
    int sum = 0;
    for (int num : nums) {
        sum += num;
    }
    return sum;
}

DFS 解法:

public int findTargetSumWays(int[] nums, int S) {
    return findTargetSumWays(nums, 0, S);
}

private int findTargetSumWays(int[] nums, int start, int S) {
    if (start == nums.length) {
        return S == 0 ? 1 : 0;
    }
    return findTargetSumWays(nums, start + 1, S + nums[start])
            + findTargetSumWays(nums, start + 1, S - nums[start]);
}

3. 01 字符构成最多的字符串

Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
Output: 4

Explanation: There are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are "10","0001","1","0"

这是一个多维费用的 0-1 背包问题,有两个背包大小,0 的数量和 1 的数量。

public int findMaxForm(String[] strs, int m, int n) {
    if (strs == null || strs.length == 0) {
        return 0;
    }
    int[][] dp = new int[m + 1][n + 1];
    for (String s : strs) {    // 每个字符串只能用一次
        int ones = 0, zeros = 0;
        for (char c : s.toCharArray()) {
            if (c == '0') {
                zeros++;
            } else {
                ones++;
            }
        }
        for (int i = m; i >= zeros; i--) {
            for (int j = n; j >= ones; j--) {
                dp[i][j] = Math.max(dp[i][j], dp[i - zeros][j - ones] + 1);
            }
        }
    }
    return dp[m][n];
}

4. 找零钱的最少硬币数

Example 1:
coins = [1, 2, 5], amount = 11
return 3 (11 = 5 + 5 + 1)

Example 2:
coins = [2], amount = 3
return -1.

题目描述:给一些面额的硬币,要求用这些硬币来组成给定面额的钱数,并且使得硬币数量最少。硬币可以重复使用。

  • 物品:硬币
  • 物品大小:面额
  • 物品价值:数量

因为硬币可以重复使用,因此这是一个完全背包问题。完全背包只需要将 0-1 背包的逆序遍历 dp 数组改为正序遍历即可。

public int coinChange(int[] coins, int amount) {
    if (amount == 0 || coins == null) return 0;
    int[] dp = new int[amount + 1];
    for (int coin : coins) {
        for (int i = coin; i <= amount; i++) { //将逆序遍历改为正序遍历
            if (i == coin) {
                dp[i] = 1;
            } else if (dp[i] == 0 && dp[i - coin] != 0) {
                dp[i] = dp[i - coin] + 1;

            } else if (dp[i - coin] != 0) {
                dp[i] = Math.min(dp[i], dp[i - coin] + 1);
            }
        }
    }
    return dp[amount] == 0 ? -1 : dp[amount];
}

5. 找零钱的硬币数组合

Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

完全背包问题,使用 dp 记录可达成目标的组合数目。

public int change(int amount, int[] coins) {
    if (coins == null) {
        return 0;
    }
    int[] dp = new int[amount + 1];
    dp[0] = 1;
    for (int coin : coins) {
        for (int i = coin; i <= amount; i++) {
            dp[i] += dp[i - coin];
        }
    }
    return dp[amount];
}

6. 字符串按单词列表分割

s = "leetcode",
dict = ["leet", "code"].
Return true because "leetcode" can be segmented as "leet code".

dict 中的单词没有使用次数的限制,因此这是一个完全背包问题。

该问题涉及到字典中单词的使用顺序,也就是说物品必须按一定顺序放入背包中,例如下面的 dict 就不够组成字符串 “leetcode”:

["lee", "tc", "cod"]

求解顺序的完全背包问题时,对物品的迭代应该放在最里层,对背包的迭代放在外层,只有这样才能让物品按一定顺序放入背包中。

public boolean wordBreak(String s, List<String> wordDict) {
    int n = s.length();
    boolean[] dp = new boolean[n + 1];
    dp[0] = true;
    for (int i = 1; i <= n; i++) {
        for (String word : wordDict) {   // 对物品的迭代应该放在最里层
            int len = word.length();
            if (len <= i && word.equals(s.substring(i - len, i))) {
                dp[i] = dp[i] || dp[i - len];
            }
        }
    }
    return dp[n];
}

7. 组合总和

nums = [1, 2, 3]
target = 4

The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)

Note that different sequences are counted as different combinations.

Therefore the output is 7.

涉及顺序的完全背包。

public int combinationSum4(int[] nums, int target) {
    if (nums == null || nums.length == 0) {
        return 0;
    }
    int[] maximum = new int[target + 1];
    maximum[0] = 1;
    Arrays.sort(nums);
    for (int i = 1; i <= target; i++) {
        for (int j = 0; j < nums.length && nums[j] <= i; j++) {
            maximum[i] += maximum[i - nums[j]];
        }
    }
    return maximum[target];
}

股票交易

1. 需要冷却期的股票交易

题目描述:交易之后需要有一天的冷却时间。


public int maxProfit(int[] prices) {
    if (prices == null || prices.length == 0) {
        return 0;
    }
    int N = prices.length;
    int[] buy = new int[N];
    int[] s1 = new int[N];
    int[] sell = new int[N];
    int[] s2 = new int[N];
    s1[0] = buy[0] = -prices[0];
    sell[0] = s2[0] = 0;
    for (int i = 1; i < N; i++) {
        buy[i] = s2[i - 1] - prices[i];
        s1[i] = Math.max(buy[i - 1], s1[i - 1]);
        sell[i] = Math.max(buy[i - 1], s1[i - 1]) + prices[i];
        s2[i] = Math.max(s2[i - 1], sell[i - 1]);
    }
    return Math.max(sell[N - 1], s2[N - 1]);
}

2. 需要交易费用的股票交易

Input: prices = [1, 3, 2, 8, 4, 9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
Buying at prices[0] = 1
Selling at prices[3] = 8
Buying at prices[4] = 4
Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

题目描述:每交易一次,都要支付一定的费用。


public int maxProfit(int[] prices, int fee) {
    int N = prices.length;
    int[] buy = new int[N];
    int[] s1 = new int[N];
    int[] sell = new int[N];
    int[] s2 = new int[N];
    s1[0] = buy[0] = -prices[0];
    sell[0] = s2[0] = 0;
    for (int i = 1; i < N; i++) {
        buy[i] = Math.max(sell[i - 1], s2[i - 1]) - prices[i];
        s1[i] = Math.max(buy[i - 1], s1[i - 1]);
        sell[i] = Math.max(buy[i - 1], s1[i - 1]) - fee + prices[i];
        s2[i] = Math.max(s2[i - 1], sell[i - 1]);
    }
    return Math.max(sell[N - 1], s2[N - 1]);
}

3. 只能进行两次的股票交易

public int maxProfit(int[] prices) {
    int firstBuy = Integer.MIN_VALUE, firstSell = 0;
    int secondBuy = Integer.MIN_VALUE, secondSell = 0;
    for (int curPrice : prices) {
        if (firstBuy < -curPrice) {
            firstBuy = -curPrice;
        }
        if (firstSell < firstBuy + curPrice) {
            firstSell = firstBuy + curPrice;
        }
        if (secondBuy < firstSell - curPrice) {
            secondBuy = firstSell - curPrice;
        }
        if (secondSell < secondBuy + curPrice) {
            secondSell = secondBuy + curPrice;
        }
    }
    return secondSell;
}

4. 只能进行 k 次的股票交易

public int maxProfit(int k, int[] prices) {
    int n = prices.length;
    if (k >= n / 2) {   // 这种情况下该问题退化为普通的股票交易问题
        int maxProfit = 0;
        for (int i = 1; i < n; i++) {
            if (prices[i] > prices[i - 1]) {
                maxProfit += prices[i] - prices[i - 1];
            }
        }
        return maxProfit;
    }
    int[][] maxProfit = new int[k + 1][n];
    for (int i = 1; i <= k; i++) {
        int localMax = maxProfit[i - 1][0] - prices[0];
        for (int j = 1; j < n; j++) {
            maxProfit[i][j] = Math.max(maxProfit[i][j - 1], prices[j] + localMax);
            localMax = Math.max(localMax, maxProfit[i - 1][j] - prices[j]);
        }
    }
    return maxProfit[k][n - 1];
}

字符串编辑

1. 删除两个字符串的字符使它们相等

Input: "sea", "eat"
Output: 2
Explanation: You need one step to make "sea" to "ea" and another step to make "eat" to "ea".

可以转换为求两个字符串的最长公共子序列问题。

public int minDistance(String word1, String word2) {
    int m = word1.length(), n = word2.length();
    int[][] dp = new int[m + 1][n + 1];
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= n; j++) {
            if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                dp[i][j] = dp[i - 1][j - 1] + 1;
            } else {
                dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
            }
        }
    }
    return m + n - 2 * dp[m][n];
}

2. 编辑距离

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

题目描述:修改一个字符串成为另一个字符串,使得修改次数最少。一次修改操作包括:插入一个字符、删除一个字符、替换一个字符。

public int minDistance(String word1, String word2) {
    if (word1 == null || word2 == null) {
        return 0;
    }
    int m = word1.length(), n = word2.length();
    int[][] dp = new int[m + 1][n + 1];
    for (int i = 1; i <= m; i++) {
        dp[i][0] = i;
    }
    for (int i = 1; i <= n; i++) {
        dp[0][i] = i;
    }
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= n; j++) {
            if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                dp[i][j] = dp[i - 1][j - 1];
            } else {
                dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i][j - 1], dp[i - 1][j])) + 1;
            }
        }
    }
    return dp[m][n];
}

3. 复制粘贴字符

题目描述:最开始只有一个字符 A,问需要多少次操作能够得到 n 个字符 A,每次操作可以复制当前所有的字符,或者粘贴。

Input: 3
Output: 3
Explanation:
Intitally, we have one character 'A'.
In step 1, we use Copy All operation.
In step 2, we use Paste operation to get 'AA'.
In step 3, we use Paste operation to get 'AAA'.
public int minSteps(int n) {
    if (n == 1) return 0;
    for (int i = 2; i <= Math.sqrt(n); i++) {
        if (n % i == 0) return i + minSteps(n / i);
    }
    return n;
}
public int minSteps(int n) {
    int[] dp = new int[n + 1];
    int h = (int) Math.sqrt(n);
    for (int i = 2; i <= n; i++) {
        dp[i] = i;
        for (int j = 2; j <= h; j++) {
            if (i % j == 0) {
                dp[i] = dp[j] + dp[i / j];
                break;
            }
        }
    }
    return dp[n];
}

二分查找

正常实现

Input : [1,2,3,4,5]
key : 3
return the index : 2
public int binarySearch(int[] nums, int key) {
    int l = 0, h = nums.length - 1;
    while (l <= h) {
        int m = l + (h - l) / 2;
        if (nums[m] == key) {
            return m;
        } else if (nums[m] > key) {
            h = m - 1;
        } else {
            l = m + 1;
        }
    }
    return -1;
}

时间复杂度

二分查找也称为折半查找,每次都能将查找区间减半,这种折半特性的算法时间复杂度为 O(logN)。

m 计算

有两种计算中值 m 的方式:

  • m = (l + h) / 2
  • m = l + (h - l) / 2

l + h 可能出现加法溢出,也就是说加法的结果大于整型能够表示的范围。但是 l 和 h 都为正数,因此 h - l 不会出现加法溢出问题。所以,最好使用第二种计算法方法。

未成功查找的返回值

循环退出时如果仍然没有查找到 key,那么表示查找失败。可以有两种返回值:

  • -1:以一个错误码表示没有查找到 key
  • l:将 key 插入到 nums 中的正确位置

变种

二分查找可以有很多变种,实现变种要注意边界值的判断。例如在一个有重复元素的数组中查找 key 的最左位置的实现如下:

public int binarySearch(int[] nums, int key) {
    int l = 0, h = nums.length;
    while (l < h) {
        int m = l + (h - l) / 2;
        if (nums[m] >= key) {
            h = m;
        } else {
            l = m + 1;
        }
    }
    return l;
}

该实现和正常实现有以下不同:

  • h 的赋值表达式为 h = m
  • 循环条件为 l < h
  • 最后返回 l 而不是 -1

在 nums[m] >= key 的情况下,可以推导出最左 key 位于 [l, m] 区间中,这是一个闭区间。h 的赋值表达式为 h = m,因为 m 位置也可能是解。

在 h 的赋值表达式为 h = m 的情况下,如果循环条件为 l <= h,那么会出现循环无法退出的情况,因此循环条件只能是 l < h。以下演示了循环条件为 l <= h 时循环无法退出的情况:

nums = {0, 1, 2}, key = 1
l   m   h
0   1   2  nums[m] >= key
0   0   1  nums[m] < key
1   1   1  nums[m] >= key
1   1   1  nums[m] >= key
...

当循环体退出时,不表示没有查找到 key,因此最后返回的结果不应该为 -1。为了验证有没有查找到,需要在调用端判断一下返回位置上的值和 key 是否相等。

1. 求开方

Input: 4
Output: 2

Input: 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since we want to return an integer, the decimal part will be truncated.

一个数 x 的开方 sqrt 一定在 0 ~ x 之间,并且满足 sqrt == x / sqrt。可以利用二分查找在 0 ~ x 之间查找 sqrt。

对于 x = 8,它的开方是 2.82842…,最后应该返回 2 而不是 3。在循环条件为 l <= h 并且循环退出时,h 总是比 l 小 1,也就是说 h = 2,l = 3,因此最后的返回值应该为 h 而不是 l。

public int mySqrt(int x) {
    if (x <= 1) {
        return x;
    }
    int l = 1, h = x;
    while (l <= h) {
        int mid = l + (h - l) / 2;
        int sqrt = x / mid;
        if (sqrt == mid) {
            return mid;
        } else if (mid > sqrt) {
            h = mid - 1;
        } else {
            l = mid + 1;
        }
    }
    return h;
}

2. 大于给定元素的最小元素

Input:
letters = ["c", "f", "j"]
target = "d"
Output: "f"

Input:
letters = ["c", "f", "j"]
target = "k"
Output: "c"

题目描述:给定一个有序的字符数组 letters 和一个字符 target,要求找出 letters 中大于 target 的最小字符,如果找不到就返回第 1 个字符。

public char nextGreatestLetter(char[] letters, char target) {
    int n = letters.length;
    int l = 0, h = n - 1;
    while (l <= h) {
        int m = l + (h - l) / 2;
        if (letters[m] <= target) {
            l = m + 1;
        } else {
            h = m - 1;
        }
    }
    return l < n ? letters[l] : letters[0];
}

3. 有序数组的 Single Element

Input: [1, 1, 2, 3, 3, 4, 4, 8, 8]
Output: 2

题目描述:一个有序数组只有一个数不出现两次,找出这个数。

要求以 O(logN) 时间复杂度进行求解,因此不能遍历数组并进行异或操作来求解,这么做的时间复杂度为 O(N)。

令 index 为 Single Element 在数组中的位置。在 index 之后,数组中原来存在的成对状态被改变。如果 m 为偶数,并且 m + 1 < index,那么 nums[m] == nums[m + 1];m + 1 >= index,那么 nums[m] != nums[m + 1]。

从上面的规律可以知道,如果 nums[m] == nums[m + 1],那么 index 所在的数组位置为 [m + 2, h],此时令 l = m + 2;如果 nums[m] != nums[m + 1],那么 index 所在的数组位置为 [l, m],此时令 h = m。

因为 h 的赋值表达式为 h = m,那么循环条件也就只能使用 l < h 这种形式。

public int singleNonDuplicate(int[] nums) {
    int l = 0, h = nums.length - 1;
    while (l < h) {
        int m = l + (h - l) / 2;
        if (m % 2 == 1) {
            m--;   // 保证 l/h/m 都在偶数位,使得查找区间大小一直都是奇数
        }
        if (nums[m] == nums[m + 1]) {
            l = m + 2;
        } else {
            h = m;
        }
    }
    return nums[l];
}

4. 第一个错误的版本

题目描述:给定一个元素 n 代表有 [1, 2, …, n] 版本,在第 x 位置开始出现错误版本,导致后面的版本都错误。可以调用 isBadVersion(int x) 知道某个版本是否错误,要求找到第一个错误的版本。

如果第 m 个版本出错,则表示第一个错误的版本在 [l, m] 之间,令 h = m;否则第一个错误的版本在 [m + 1, h] 之间,令 l = m + 1。

因为 h 的赋值表达式为 h = m,因此循环条件为 l < h。

public int firstBadVersion(int n) {
    int l = 1, h = n;
    while (l < h) {
        int mid = l + (h - l) / 2;
        if (isBadVersion(mid)) {
            h = mid;
        } else {
            l = mid + 1;
        }
    }
    return l;
}

5. 旋转数组的最小数字

Input: [3,4,5,1,2],
Output: 1
public int findMin(int[] nums) {
    int l = 0, h = nums.length - 1;
    while (l < h) {
        int m = l + (h - l) / 2;
        if (nums[m] <= nums[h]) {
            h = m;
        } else {
            l = m + 1;
        }
    }
    return nums[l];
}

6. 查找区间

Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]

Input: nums = [5,7,7,8,8,10], target = 6
Output: [-1,-1]

题目描述:给定一个有序数组 nums 和一个目标 target,要求找到 target 在 nums 中的第一个位置和最后一个位置。

可以用二分查找找出第一个位置和最后一个位置,但是寻找的方法有所不同,需要实现两个二分查找。我们将寻找 target 最后一个位置,转换成寻找 target+1 第一个位置,再往前移动一个位置。这样我们只需要实现一个二分查找代码即可。

public int[] searchRange(int[] nums, int target) {
    int first = findFirst(nums, target);
    int last = findFirst(nums, target + 1) - 1;
    if (first == nums.length || nums[first] != target) {
        return new int[]{-1, -1};
    } else {
        return new int[]{first, Math.max(first, last)};
    }
}

private int findFirst(int[] nums, int target) {
    int l = 0, h = nums.length; // 注意 h 的初始值
    while (l < h) {
        int m = l + (h - l) / 2;
        if (nums[m] >= target) {
            h = m;
        } else {
            l = m + 1;
        }
    }
    return l;
}

在寻找第一个位置的二分查找代码中,需要注意 h 的取值为 nums.length,而不是 nums.length - 1。先看以下示例:

nums = [2,2], target = 2

如果 h 的取值为 nums.length - 1,那么 last = findFirst(nums, target + 1) - 1 = 1 - 1 = 0。这是因为 findLeft 只会返回 [0, nums.length - 1] 范围的值,对于 findFirst([2,2], 3) ,我们希望返回 3 插入 nums 中的位置,也就是数组最后一个位置再往后一个位置,即 nums.length。所以我们需要将 h 取值为 nums.length,从而使得 findFirst返回的区间更大,能够覆盖 target 大于 nums 最后一个元素的情况。

分治

1. 给表达式加括号

Input: "2-1-1".

((2-1)-1) = 0
(2-(1-1)) = 2

Output : [0, 2]
public List<Integer> diffWaysToCompute(String input) {
    List<Integer> ways = new ArrayList<>();
    for (int i = 0; i < input.length(); i++) {
        char c = input.charAt(i);
        if (c == '+' || c == '-' || c == '*') {
            List<Integer> left = diffWaysToCompute(input.substring(0, i));
            List<Integer> right = diffWaysToCompute(input.substring(i + 1));
            for (int l : left) {
                for (int r : right) {
                    switch (c) {
                        case '+':
                            ways.add(l + r);
                            break;
                        case '-':
                            ways.add(l - r);
                            break;
                        case '*':
                            ways.add(l * r);
                            break;
                    }
                }
            }
        }
    }
    if (ways.size() == 0) {
        ways.add(Integer.valueOf(input));
    }
    return ways;
}

2. 不同的二叉搜索树

给定一个数字 n,要求生成所有值为 1…n 的二叉搜索树。

Input: 3
Output:
[
  [1,null,3,2],
  [3,2,null,1],
  [3,1,null,null,2],
  [2,1,3],
  [1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST's shown below:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3
public List<TreeNode> generateTrees(int n) {
    if (n < 1) {
        return new LinkedList<TreeNode>();
    }
    return generateSubtrees(1, n);
}

private List<TreeNode> generateSubtrees(int s, int e) {
    List<TreeNode> res = new LinkedList<TreeNode>();
    if (s > e) {
        res.add(null);
        return res;
    }
    for (int i = s; i <= e; ++i) {
        List<TreeNode> leftSubtrees = generateSubtrees(s, i - 1);
        List<TreeNode> rightSubtrees = generateSubtrees(i + 1, e);
        for (TreeNode left : leftSubtrees) {
            for (TreeNode right : rightSubtrees) {
                TreeNode root = new TreeNode(i);
                root.left = left;
                root.right = right;
                res.add(root);
            }
        }
    }
    return res;
}

哈希表

哈希表使用 O(N) 空间复杂度存储数据,并且以 O(1) 时间复杂度求解问题。

  • Java 中的 HashSet 用于存储一个集合,可以查找元素是否在集合中。如果元素有穷,并且范围不大,那么可以用一个布尔数组来存储一个元素是否存在。例如对于只有小写字符的元素,就可以用一个长度为 26 的布尔数组来存储一个字符集合,使得空间复杂度降低为 O(1)。

Java 中的 HashMap 主要用于映射关系,从而把两个元素联系起来。HashMap 也可以用来对元素进行计数统计,此时键为元素,值为计数。和 HashSet 类似,如果元素有穷并且范围不大,可以用整型数组来进行统计。在对一个内容进行压缩或者其它转换时,利用 HashMap 可以把原始内容和转换后的内容联系起来。例如在一个简化 url 的系统中 [Leetcdoe : 535. Encode and Decode TinyURL (Medium)

Leetcode,利用 HashMap 就可以存储精简后的 url 到原始 url 的映射,使得不仅可以显示简化的 url,也可以根据简化的 url 得到原始 url 从而定位到正确的资源�) / 力扣,利用 HashMap 就可以存储精简后的 url 到原始 url 的映射,使得不仅可以显示简化的 url,也可以根据简化的 url 得到原始 url 从而定位到正确的资源�)

1. 数组中两个数的和为给定值

可以先对数组进行排序,然后使用双指针方法或者二分查找方法。这样做的时间复杂度为 O(NlogN),空间复杂度为 O(1)。

用 HashMap 存储数组元素和索引的映射,在访问到 nums[i] 时,判断 HashMap 中是否存在 target - nums[i],如果存在说明 target - nums[i] 所在的索引和 i 就是要找的两个数。该方法的时间复杂度为 O(N),空间复杂度为 O(N),使用空间来换取时间。

public int[] twoSum(int[] nums, int target) {
    HashMap<Integer, Integer> indexForNum = new HashMap<>();
    for (int i = 0; i < nums.length; i++) {
        if (indexForNum.containsKey(target - nums[i])) {
            return new int[]{indexForNum.get(target - nums[i]), i};
        } else {
            indexForNum.put(nums[i], i);
        }
    }
    return null;
}

2. 判断数组是否含有重复元素

217. Contains Duplicate (Easy)

Leetcode / 力扣

public boolean containsDuplicate(int[] nums) {
    Set<Integer> set = new HashSet<>();
    for (int num : nums) {
        set.add(num);
    }
    return set.size() < nums.length;
}

3. 最长和谐序列

Input: [1,3,2,2,5,2,3,7]
Output: 5
Explanation: The longest harmonious subsequence is [3,2,2,2,3].

和谐序列中最大数和最小数之差正好为 1,应该注意的是序列的元素不一定是数组的连续元素。

public int findLHS(int[] nums) {
    Map<Integer, Integer> countForNum = new HashMap<>();
    for (int num : nums) {
        countForNum.put(num, countForNum.getOrDefault(num, 0) + 1);
    }
    int longest = 0;
    for (int num : countForNum.keySet()) {
        if (countForNum.containsKey(num + 1)) {
            longest = Math.max(longest, countForNum.get(num + 1) + countForNum.get(num));
        }
    }
    return longest;
}

4. 最长连续序列

Given [100, 4, 200, 1, 3, 2],
The longest consecutive elements sequence is [1, 2, 3, 4]. Return its length: 4.

要求以 O(N) 的时间复杂度求解。

public int longestConsecutive(int[] nums) {
    Map<Integer, Integer> countForNum = new HashMap<>();
    for (int num : nums) {
        countForNum.put(num, 1);
    }
    for (int num : nums) {
        forward(countForNum, num);
    }
    return maxCount(countForNum);
}

private int forward(Map<Integer, Integer> countForNum, int num) {
    if (!countForNum.containsKey(num)) {
        return 0;
    }
    int cnt = countForNum.get(num);
    if (cnt > 1) {
        return cnt;
    }
    cnt = forward(countForNum, num + 1) + 1;
    countForNum.put(num, cnt);
    return cnt;
}

private int maxCount(Map<Integer, Integer> countForNum) {
    int max = 0;
    for (int num : countForNum.keySet()) {
        max = Math.max(max, countForNum.get(num));
    }
    return max;
}

链表

链表是空节点,或者有一个值和一个指向下一个链表的指针,因此很多链表问题可以用递归来处理。

1. 找出两个链表的交点

例如以下示例中 A 和 B 两个链表相交于 c1:

A:          a1 → a2
                    ↘
                      c1 → c2 → c3
                    ↗
B:    b1 → b2 → b3

但是不会出现以下相交的情况,因为每个节点只有一个 next 指针,也就只能有一个后继节点,而以下示例中节点 c 有两个后继节点。

A:          a1 → a2       d1 → d2
                    ↘  ↗
                      c
                    ↗  ↘
B:    b1 → b2 → b3        e1 → e2

要求时间复杂度为 O(N),空间复杂度为 O(1)。如果不存在交点则返回 null。

设 A 的长度为 a + c,B 的长度为 b + c,其中 c 为尾部公共部分长度,可知 a + c + b = b + c + a。

当访问 A 链表的指针访问到链表尾部时,令它从链表 B 的头部开始访问链表 B;同样地,当访问 B 链表的指针访问到链表尾部时,令它从链表 A 的头部开始访问链表 A。这样就能控制访问 A 和 B 两个链表的指针能同时访问到交点。

如果不存在交点,那么 a + b = b + a,以下实现代码中 l1 和 l2 会同时为 null,从而退出循环。

public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
    ListNode l1 = headA, l2 = headB;
    while (l1 != l2) {
        l1 = (l1 == null) ? headB : l1.next;
        l2 = (l2 == null) ? headA : l2.next;
    }
    return l1;
}

如果只是判断是否存在交点,那么就是另一个问题,即 编程之美 3.6 的问题。有两种解法:

  • 把第一个链表的结尾连接到第二个链表的开头,看第二个链表是否存在环;
  • 或者直接比较两个链表的最后一个节点是否相同。

2. 链表反转

递归

public ListNode reverseList(ListNode head) {
    if (head == null || head.next == null) {
        return head;
    }
    ListNode next = head.next;
    ListNode newHead = reverseList(next);
    next.next = head;
    head.next = null;
    return newHead;
}

头插法

public ListNode reverseList(ListNode head) {
    ListNode newHead = new ListNode(-1);
    while (head != null) {
        ListNode next = head.next;
        head.next = newHead.next;
        newHead.next = head;
        head = next;
    }
    return newHead.next;
}

3. 归并两个有序的链表

public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
    if (l1 == null) return l2;
    if (l2 == null) return l1;
    if (l1.val < l2.val) {
        l1.next = mergeTwoLists(l1.next, l2);
        return l1;
    } else {
        l2.next = mergeTwoLists(l1, l2.next);
        return l2;
    }
}

4. 从有序链表中删除重复节点

Given 1->1->2, return 1->2.
Given 1->1->2->3->3, return 1->2->3.
public ListNode deleteDuplicates(ListNode head) {
    if (head == null || head.next == null) return head;
    head.next = deleteDuplicates(head.next);
    return head.val == head.next.val ? head.next : head;
}

5. 删除链表的倒数第 n 个节点

Given linked list: 1->2->3->4->5, and n = 2.
After removing the second node from the end, the linked list becomes 1->2->3->5.
public ListNode removeNthFromEnd(ListNode head, int n) {
    ListNode fast = head;
    while (n-- > 0) {
        fast = fast.next;
    }
    if (fast == null) return head.next;
    ListNode slow = head;
    while (fast.next != null) {
        fast = fast.next;
        slow = slow.next;
    }
    slow.next = slow.next.next;
    return head;
}

6. 交换链表中的相邻结点

Given 1->2->3->4, you should return the list as 2->1->4->3.

题目要求:不能修改结点的 val 值,O(1) 空间复杂度。

public ListNode swapPairs(ListNode head) {
    ListNode node = new ListNode(-1);
    node.next = head;
    ListNode pre = node;
    while (pre.next != null && pre.next.next != null) {
        ListNode l1 = pre.next, l2 = pre.next.next;
        ListNode next = l2.next;
        l1.next = next;
        l2.next = l1;
        pre.next = l2;

        pre = l1;
    }
    return node.next;
}

7. 链表求和

Input: (7 -> 2 -> 4 -> 3) + (5 -> 6 -> 4)
Output: 7 -> 8 -> 0 -> 7

题目要求:不能修改原始链表。

public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
    Stack<Integer> l1Stack = buildStack(l1);
    Stack<Integer> l2Stack = buildStack(l2);
    ListNode head = new ListNode(-1);
    int carry = 0;
    while (!l1Stack.isEmpty() || !l2Stack.isEmpty() || carry != 0) {
        int x = l1Stack.isEmpty() ? 0 : l1Stack.pop();
        int y = l2Stack.isEmpty() ? 0 : l2Stack.pop();
        int sum = x + y + carry;
        ListNode node = new ListNode(sum % 10);
        node.next = head.next;
        head.next = node;
        carry = sum / 10;
    }
    return head.next;
}

private Stack<Integer> buildStack(ListNode l) {
    Stack<Integer> stack = new Stack<>();
    while (l != null) {
        stack.push(l.val);
        l = l.next;
    }
    return stack;
}

8. 回文链表

题目要求:以 O(1) 的空间复杂度来求解。

切成两半,把后半段反转,然后比较两半是否相等。

public boolean isPalindrome(ListNode head) {
    if (head == null || head.next == null) return true;
    ListNode slow = head, fast = head.next;
    while (fast != null && fast.next != null) {
        slow = slow.next;
        fast = fast.next.next;
    }
    if (fast != null) slow = slow.next;  // 偶数节点,让 slow 指向下一个节点
    cut(head, slow);                     // 切成两个链表
    return isEqual(head, reverse(slow));
}

private void cut(ListNode head, ListNode cutNode) {
    while (head.next != cutNode) {
        head = head.next;
    }
    head.next = null;
}

private ListNode reverse(ListNode head) {
    ListNode newHead = null;
    while (head != null) {
        ListNode nextNode = head.next;
        head.next = newHead;
        newHead = head;
        head = nextNode;
    }
    return newHead;
}

private boolean isEqual(ListNode l1, ListNode l2) {
    while (l1 != null && l2 != null) {
        if (l1.val != l2.val) return false;
        l1 = l1.next;
        l2 = l2.next;
    }
    return true;
}

9. 分隔链表

Input:
root = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], k = 3
Output: [[1, 2, 3, 4], [5, 6, 7], [8, 9, 10]]
Explanation:
The input has been split into consecutive parts with size difference at most 1, and earlier parts are a larger size than the later parts.

题目描述:把链表分隔成 k 部分,每部分的长度都应该尽可能相同,排在前面的长度应该大于等于后面的。

public ListNode[] splitListToParts(ListNode root, int k) {
    int N = 0;
    ListNode cur = root;
    while (cur != null) {
        N++;
        cur = cur.next;
    }
    int mod = N % k;
    int size = N / k;
    ListNode[] ret = new ListNode[k];
    cur = root;
    for (int i = 0; cur != null && i < k; i++) {
        ret[i] = cur;
        int curSize = size + (mod-- > 0 ? 1 : 0);
        for (int j = 0; j < curSize - 1; j++) {
            cur = cur.next;
        }
        ListNode next = cur.next;
        cur.next = null;
        cur = next;
    }
    return ret;
}

10. 链表元素按奇偶聚集

Example:
Given 1->2->3->4->5->NULL,
return 1->3->5->2->4->NULL.
public ListNode oddEvenList(ListNode head) {
    if (head == null) {
        return head;
    }
    ListNode odd = head, even = head.next, evenHead = even;
    while (even != null && even.next != null) {
        odd.next = odd.next.next;
        odd = odd.next;
        even.next = even.next.next;
        even = even.next;
    }
    odd.next = evenHead;
    return head;
}

排序

快速选择

用于求解 Kth Element 问题,也就是第 K 个元素的问题。

可以使用快速排序的 partition() 进行实现。需要先打乱数组,否则最坏情况下时间复杂度为 O(N2)。

用于求解 TopK Elements 问题,也就是 K 个最小元素的问题。使用最小堆来实现 TopK 问题,最小堆使用大顶堆来实现,大顶堆的堆顶元素为当前堆的最大元素。实现过程:不断地往大顶堆中插入新元素,当堆中元素的数量大于 k 时,移除堆顶元素,也就是当前堆中最大的元素,剩下的元素都为当前添加过的元素中最小的 K 个元素。插入和移除堆顶元素的时间复杂度都为 log2N。

堆也可以用于求解 Kth Element 问题,得到了大小为 K 的最小堆之后,因为使用了大顶堆来实现,因此堆顶元素就是第 K 大的元素。

快速选择也可以求解 TopK Elements 问题,因为找到 Kth Element 之后,再遍历一次数组,所有小于等于 Kth Element 的元素都是 TopK Elements。

可以看到,快速选择和堆排序都可以求解 Kth Element 和 TopK Elements 问题。

1. Kth Element

Input: [3,2,1,5,6,4] and k = 2
Output: 5

题目描述:找到倒数第 k 个的元素。

排序 :时间复杂度 O(NlogN),空间复杂度 O(1)

public int findKthLargest(int[] nums, int k) {
    Arrays.sort(nums);
    return nums[nums.length - k];
}

:时间复杂度 O(NlogK),空间复杂度 O(K)。

public int findKthLargest(int[] nums, int k) {
    PriorityQueue<Integer> pq = new PriorityQueue<>(); // 小顶堆
    for (int val : nums) {
        pq.add(val);
        if (pq.size() > k)  // 维护堆的大小为 K
            pq.poll();
    }
    return pq.peek();
}

快速选择 :时间复杂度 O(N),空间复杂度 O(1)

public int findKthLargest(int[] nums, int k) {
    k = nums.length - k;
    int l = 0, h = nums.length - 1;
    while (l < h) {
        int j = partition(nums, l, h);
        if (j == k) {
            break;
        } else if (j < k) {
            l = j + 1;
        } else {
            h = j - 1;
        }
    }
    return nums[k];
}

private int partition(int[] a, int l, int h) {
    int i = l, j = h + 1;
    while (true) {
        while (a[++i] < a[l] && i < h) ;
        while (a[--j] > a[l] && j > l) ;
        if (i >= j) {
            break;
        }
        swap(a, i, j);
    }
    swap(a, l, j);
    return j;
}

private void swap(int[] a, int i, int j) {
    int t = a[i];
    a[i] = a[j];
    a[j] = t;
}

桶排序

1. 出现频率最多的 k 个元素

Given [1,1,1,2,2,3] and k = 2, return [1,2].

设置若干个桶,每个桶存储出现频率相同的数。桶的下标表示数出现的频率,即第 i 个桶中存储的数出现的频率为 i。

把数都放到桶之后,从后向前遍历桶,最先得到的 k 个数就是出现频率最多的的 k 个数。

public int[] topKFrequent(int[] nums, int k) {
    Map<Integer, Integer> frequencyForNum = new HashMap<>();
    for (int num : nums) {
        frequencyForNum.put(num, frequencyForNum.getOrDefault(num, 0) + 1);
    }
    List<Integer>[] buckets = new ArrayList[nums.length + 1];
    for (int key : frequencyForNum.keySet()) {
        int frequency = frequencyForNum.get(key);
        if (buckets[frequency] == null) {
            buckets[frequency] = new ArrayList<>();
        }
        buckets[frequency].add(key);
    }
    List<Integer> topK = new ArrayList<>();
    for (int i = buckets.length - 1; i >= 0 && topK.size() < k; i--) {
        if (buckets[i] == null) {
            continue;
        }
        if (buckets[i].size() <= (k - topK.size())) {
            topK.addAll(buckets[i]);
        } else {
            topK.addAll(buckets[i].subList(0, k - topK.size()));
        }
    }
    int[] res = new int[k];
    for (int i = 0; i < k; i++) {
        res[i] = topK.get(i);
    }
    return res;
}

2. 按照字符出现次数对字符串排序

Input:
"tree"

Output:
"eert"

Explanation:
'e' appears twice while 'r' and 't' both appear once.
So 'e' must appear before both 'r' and 't'. Therefore "eetr" is also a valid answer.
public String frequencySort(String s) {
    Map<Character, Integer> frequencyForNum = new HashMap<>();
    for (char c : s.toCharArray())
        frequencyForNum.put(c, frequencyForNum.getOrDefault(c, 0) + 1);

    List<Character>[] frequencyBucket = new ArrayList[s.length() + 1];
    for (char c : frequencyForNum.keySet()) {
        int f = frequencyForNum.get(c);
        if (frequencyBucket[f] == null) {
            frequencyBucket[f] = new ArrayList<>();
        }
        frequencyBucket[f].add(c);
    }
    StringBuilder str = new StringBuilder();
    for (int i = frequencyBucket.length - 1; i >= 0; i--) {
        if (frequencyBucket[i] == null) {
            continue;
        }
        for (char c : frequencyBucket[i]) {
            for (int j = 0; j < i; j++) {
                str.append(c);
            }
        }
    }
    return str.toString();
}

荷兰国旗问题

荷兰国旗包含三种颜色:红、白、蓝。

有三种颜色的球,算法的目标是将这三种球按颜色顺序正确地排列。它其实是三向切分快速排序的一种变种,在三向切分快速排序中,每次切分都将数组分成三个区间:小于切分元素、等于切分元素、大于切分元素,而该算法是将数组分成三个区间:等于红色、等于白色、等于蓝色。


1. 按颜色进行排序

Input: [2,0,2,1,1,0]
Output: [0,0,1,1,2,2]

题目描述:只有 0/1/2 三种颜色。

public void sortColors(int[] nums) {
    int zero = -1, one = 0, two = nums.length;
    while (one < two) {
        if (nums[one] == 0) {
            swap(nums, ++zero, one++);
        } else if (nums[one] == 2) {
            swap(nums, --two, one);
        } else {
            ++one;
        }
    }
}

private void swap(int[] nums, int i, int j) {
    int t = nums[i];
    nums[i] = nums[j];
    nums[j] = t;
}

递归

一棵树要么是空树,要么有两个指针,每个指针指向一棵树。树是一种递归结构,很多树的问题可以使用递归来处理。

1. 树的高度

public int maxDepth(TreeNode root) {
    if (root == null) return 0;
    return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
}

2. 平衡树

    3
   / \
  9  20
    /  \
   15   7

平衡树左右子树高度差都小于等于 1

private boolean result = true;

public boolean isBalanced(TreeNode root) {
    maxDepth(root);
    return result;
}

public int maxDepth(TreeNode root) {
    if (root == null) return 0;
    int l = maxDepth(root.left);
    int r = maxDepth(root.right);
    if (Math.abs(l - r) > 1) result = false;
    return 1 + Math.max(l, r);
}

3. 两节点的最长路径

Input:

         1
        / \
       2  3
      / \
     4   5

Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].
private int max = 0;

public int diameterOfBinaryTree(TreeNode root) {
    depth(root);
    return max;
}

private int depth(TreeNode root) {
    if (root == null) return 0;
    int leftDepth = depth(root.left);
    int rightDepth = depth(root.right);
    max = Math.max(max, leftDepth + rightDepth);
    return Math.max(leftDepth, rightDepth) + 1;
}

4. 翻转树

public TreeNode invertTree(TreeNode root) {
    if (root == null) return null;
    TreeNode left = root.left;  // 后面的操作会改变 left 指针,因此先保存下来
    root.left = invertTree(root.right);
    root.right = invertTree(left);
    return root;
}

5. 归并两棵树

Input:
       Tree 1                     Tree 2
          1                         2
         / \                       / \
        3   2                     1   3
       /                           \   \
      5                             4   7

Output:
         3
        / \
       4   5
      / \   \
     5   4   7
public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
    if (t1 == null && t2 == null) return null;
    if (t1 == null) return t2;
    if (t2 == null) return t1;
    TreeNode root = new TreeNode(t1.val + t2.val);
    root.left = mergeTrees(t1.left, t2.left);
    root.right = mergeTrees(t1.right, t2.right);
    return root;
}

6. 判断路径和是否等于一个数

Given the below binary tree and sum = 22,

              5
             / \
            4   8
           /   / \
          11  13  4
         /  \      \
        7    2      1

return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.

路径和定义为从 root 到 leaf 的所有节点的和。

public boolean hasPathSum(TreeNode root, int sum) {
    if (root == null) return false;
    if (root.left == null && root.right == null && root.val == sum) return true;
    return hasPathSum(root.left, sum - root.val) || hasPathSum(root.right, sum - root.val);
}

7. 统计路径和等于一个数的路径数量

root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8

      10
     /  \
    5   -3
   / \    \
  3   2   11
 / \   \
3  -2   1

Return 3. The paths that sum to 8 are:

1.  5 -> 3
2.  5 -> 2 -> 1
3. -3 -> 11

路径不一定以 root 开头,也不一定以 leaf 结尾,但是必须连续。

public int pathSum(TreeNode root, int sum) {
    if (root == null) return 0;
    int ret = pathSumStartWithRoot(root, sum) + pathSum(root.left, sum) + pathSum(root.right, sum);
    return ret;
}

private int pathSumStartWithRoot(TreeNode root, int sum) {
    if (root == null) return 0;
    int ret = 0;
    if (root.val == sum) ret++;
    ret += pathSumStartWithRoot(root.left, sum - root.val) + pathSumStartWithRoot(root.right, sum - root.val);
    return ret;
}

8. 子树

Given tree s:
     3
    / \
   4   5
  / \
 1   2

Given tree t:
   4
  / \
 1   2

Return true, because t has the same structure and node values with a subtree of s.

Given tree s:

     3
    / \
   4   5
  / \
 1   2
    /
   0

Given tree t:
   4
  / \
 1   2

Return false.
public boolean isSubtree(TreeNode s, TreeNode t) {
    if (s == null) return false;
    return isSubtreeWithRoot(s, t) || isSubtree(s.left, t) || isSubtree(s.right, t);
}

private boolean isSubtreeWithRoot(TreeNode s, TreeNode t) {
    if (t == null && s == null) return true;
    if (t == null || s == null) return false;
    if (t.val != s.val) return false;
    return isSubtreeWithRoot(s.left, t.left) && isSubtreeWithRoot(s.right, t.right);
}

9. 树的对称

    1
   / \
  2   2
 / \ / \
3  4 4  3
public boolean isSymmetric(TreeNode root) {
    if (root == null) return true;
    return isSymmetric(root.left, root.right);
}

private boolean isSymmetric(TreeNode t1, TreeNode t2) {
    if (t1 == null && t2 == null) return true;
    if (t1 == null || t2 == null) return false;
    if (t1.val != t2.val) return false;
    return isSymmetric(t1.left, t2.right) && isSymmetric(t1.right, t2.left);
}

10. 最小路径

树的根节点到叶子节点的最小路径长度

public int minDepth(TreeNode root) {
    if (root == null) return 0;
    int left = minDepth(root.left);
    int right = minDepth(root.right);
    if (left == 0 || right == 0) return left + right + 1;
    return Math.min(left, right) + 1;
}

11. 统计左叶子节点的和

404. Sum of Left Leaves (Easy)

Leetcode / 力扣

    3
   / \
  9  20
    /  \
   15   7

There are two left leaves in the binary tree, with values 9 and 15 respectively. Return 24.
public int sumOfLeftLeaves(TreeNode root) {
    if (root == null) return 0;
    if (isLeaf(root.left)) return root.left.val + sumOfLeftLeaves(root.right);
    return sumOfLeftLeaves(root.left) + sumOfLeftLeaves(root.right);
}

private boolean isLeaf(TreeNode node){
    if (node == null) return false;
    return node.left == null && node.right == null;
}

12. 相同节点值的最大路径长度

             1
            / \
           4   5
          / \   \
         4   4   5

Output : 2
private int path = 0;

public int longestUnivaluePath(TreeNode root) {
    dfs(root);
    return path;
}

private int dfs(TreeNode root){
    if (root == null) return 0;
    int left = dfs(root.left);
    int right = dfs(root.right);
    int leftPath = root.left != null && root.left.val == root.val ? left + 1 : 0;
    int rightPath = root.right != null && root.right.val == root.val ? right + 1 : 0;
    path = Math.max(path, leftPath + rightPath);
    return Math.max(leftPath, rightPath);
}

13. 间隔遍历

     3
    / \
   2   3
    \   \
     3   1
Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
Map<TreeNode, Integer> cache = new HashMap<>(); 

public int rob(TreeNode root) {
    if (root == null) return 0;
    if (cache.containsKey(root)) return cache.get(root);
    int val1 = root.val;
    if (root.left != null) val1 += rob(root.left.left) + rob(root.left.right);
    if (root.right != null) val1 += rob(root.right.left) + rob(root.right.right);
    int val2 = rob(root.left) + rob(root.right);
    int res = Math.max(val1, val2);
    cache.put(root, res);
    return res;
}

14. 找出二叉树中第二小的节点

Input:
   2
  / \
 2   5
    / \
    5  7

Output: 5

一个节点要么具有 0 个或 2 个子节点,如果有子节点,那么根节点是最小的节点。

public int findSecondMinimumValue(TreeNode root) {
    if (root == null) return -1;
    if (root.left == null && root.right == null) return -1;
    int leftVal = root.left.val;
    int rightVal = root.right.val;
    if (leftVal == root.val) leftVal = findSecondMinimumValue(root.left);
    if (rightVal == root.val) rightVal = findSecondMinimumValue(root.right);
    if (leftVal != -1 && rightVal != -1) return Math.min(leftVal, rightVal);
    if (leftVal != -1) return leftVal;
    return rightVal;
}

层次遍历

使用 BFS 进行层次遍历。不需要使用两个队列来分别存储当前层的节点和下一层的节点,因为在开始遍历一层的节点时,当前队列中的节点数就是当前层的节点数,只要控制遍历这么多节点数,就能保证这次遍历的都是当前层的节点。

1. 一棵树每层节点的平均数

public List<Double> averageOfLevels(TreeNode root) {
    List<Double> ret = new ArrayList<>();
    if (root == null) return ret;
    Queue<TreeNode> queue = new LinkedList<>();
    queue.add(root);
    while (!queue.isEmpty()) {
        int cnt = queue.size();
        double sum = 0;
        for (int i = 0; i < cnt; i++) {
            TreeNode node = queue.poll();
            sum += node.val;
            if (node.left != null) queue.add(node.left);
            if (node.right != null) queue.add(node.right);
        }
        ret.add(sum / cnt);
    }
    return ret;
}

2. 得到左下角的节点

Input:

        1
       / \
      2   3
     /   / \
    4   5   6
       /
      7

Output:
7
public int findBottomLeftValue(TreeNode root) {
    Queue<TreeNode> queue = new LinkedList<>();
    queue.add(root);
    while (!queue.isEmpty()) {
        root = queue.poll();
        if (root.right != null) queue.add(root.right);
        if (root.left != null) queue.add(root.left);
    }
    return root.val;
}

前中后序遍历

    1
   / \
  2   3
 / \   \
4   5   6
  • 层次遍历顺序:[1 2 3 4 5 6]
  • 前序遍历顺序:[1 2 4 5 3 6]
  • 中序遍历顺序:[4 2 5 1 3 6]
  • 后序遍历顺序:[4 5 2 6 3 1]

层次遍历使用 BFS 实现,利用的就是 BFS 一层一层遍历的特性;而前序、中序、后序遍历利用了 DFS 实现。

前序、中序、后序遍只是在对节点访问的顺序有一点不同,其它都相同。

① 前序

void dfs(TreeNode root) {
    visit(root);
    dfs(root.left);
    dfs(root.right);
}

② 中序

void dfs(TreeNode root) {
    dfs(root.left);
    visit(root);
    dfs(root.right);
}

③ 后序

void dfs(TreeNode root) {
    dfs(root.left);
    dfs(root.right);
    visit(root);
}

1. 非递归实现二叉树的前序遍历

public List<Integer> preorderTraversal(TreeNode root) {
    List<Integer> ret = new ArrayList<>();
    Stack<TreeNode> stack = new Stack<>();
    stack.push(root);
    while (!stack.isEmpty()) {
        TreeNode node = stack.pop();
        if (node == null) continue;
        ret.add(node.val);
        stack.push(node.right);  // 先右后左,保证左子树先遍历
        stack.push(node.left);
    }
    return ret;
}

2. 非递归实现二叉树的后序遍历

前序遍历为 root -> left -> right,后序遍历为 left -> right -> root。可以修改前序遍历成为 root -> right -> left,那么这个顺序就和后序遍历正好相反。文章来源地址https://www.toymoban.com/news/detail-642452.html

public List<Integer> postorderTraversal(TreeNode root) {
    List<Integer> ret = new ArrayList<>();
    Stack<TreeNode> stack = new Stack<>();
    stack.push(root);
    while (!stack.isEmpty()) {
        TreeNode node = stack.pop();
        if (node == null) continue;
        ret.add(node.val);
        stack.push(node.left);
        stack.push(node.right);
    }
    Collections.reverse(ret);
    return ret;
}

3. 非递归实现二叉树的中序遍历

public List<Integer> inorderTraversal(TreeNode root) {
    List<Integer> ret = new ArrayList<>();
    if (root == null) return ret;
    Stack<TreeNode> stack = new Stack<>();
    TreeNode cur = root;
    while (cur != null || !stack.isEmpty()) {
        while (cur != null) {
            stack.push(cur);
            cur = cur.left;
        }
        TreeNode node = stack.pop();
        ret.add(node.val);
        cur = node.right;
    }
    return ret;
}

到了这里,关于200个经典面试题(算法思想+数据结构)_1的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构(五)数据结构与算法中的经典题

    本文是在原本数据结构与算法闯关的基础上总结得来,加入了自己的理解和部分习题讲解。至此数据结构介绍已完结,后续会把数据结构算法题系列更完。 原活动链接 邀请码: JL57F5 根据要求完成题目 Q1. (单选)以下哪些数据结构支持随机访问? A. 数组 B. 单链表 C. 双向链表

    2024年01月20日
    浏览(44)
  • 经典面试题:玩家进游戏场地分配号码、判断括号是否闭合、提取回文串字符的分析和 php 程序实现 - 经典数据结构面试

        给定一长串字母和符号,里面有三种括号包括([{}])这些,需要判断这三种括号必须是配对的。即这三类括号要么不出现,要出现必须是先出现左边的括号,然后出现右边的,中间括号可以嵌套。     定义一个字符对应关系数组,初始化一个数组栈。所以进入的左边符号入

    2024年04月25日
    浏览(43)
  • 【数据结构与算法】之多指针算法经典问题

    本文为 【数据结构与算法】多指针算法经典问题 相关介绍,下边将对 链表反转 (包含 迭代反转链表 、 递归反转 、 头插法反转 ), 双指针-快慢指针 (包含 寻找单向无环链表的中点 、 判断单向链表是否有环及找环入口 ), 双指针-左右指针 (包含 两数之和 、 二分查

    2024年02月03日
    浏览(66)
  • 【数据结构与算法】十大经典排序算法-希尔排序

    🌟 个人博客: www.hellocode.top 🏰 Java知识导航: Java-Navigate 🔥 CSDN: HelloCode. 🌞 知乎 :HelloCode 🌴 掘金 :HelloCode ⚡如有问题,欢迎指正,一起学习~~ 希尔排序是一种插入排序的改进版本,旨在解决插入排序在处理大规模数据时的效率问题。通过将数组分为多个子序列并对

    2024年02月12日
    浏览(80)
  • 【数据结构与算法】十大经典排序算法-快速排序

    🌟 个人博客: www.hellocode.top 🏰 Java知识导航: Java-Navigate 🔥 CSDN: HelloCode. 🌞 知乎 :HelloCode 🌴 掘金 :HelloCode ⚡如有问题,欢迎指正,一起学习~~ 快速排序(Quick Sort)是一种高效的排序算法,是对冒泡排序的优化。它采用分治法(Divide and Conquer)的思想,将待排序序列

    2024年02月13日
    浏览(64)
  • 【数据结构与算法】十大经典排序算法-冒泡排序

    🌟 个人博客: www.hellocode.top 🏰 Java知识导航: Java-Navigate 🔥 CSDN: HelloCode. 🌴 掘金 :HelloCode 🌞 知乎 :HelloCode ⚡如有问题,欢迎指正,一起学习~~ 冒泡排序(Bubble Sort)是一种简单的排序算法,它通过重复地交换相邻元素的位置来将最大(或最小)的元素逐步“冒泡”到

    2024年02月14日
    浏览(74)
  • 【数据结构与算法】十大经典排序算法-插入排序

    🌟 个人博客: www.hellocode.top 🏰 Java知识导航: Java-Navigate 🔥 CSDN: HelloCode. 🌞 知乎 :HelloCode 🌴 掘金 :HelloCode ⚡如有问题,欢迎指正,一起学习~~ 插入排序(Insertion Sort)是一种简单直观的排序算法,其基本思想是将一个记录插入到已排好序的有序序列中,直到所有记录

    2024年02月13日
    浏览(83)
  • 【数据结构】盘点那些经典的 [哈希面试题]【哈希切割】【位图应用】【布隆过滤器】(10)

    前言 大家好吖,欢迎来到 YY 滴 数据结构 系列 ,热烈欢迎! 本章主要内容面向接触过C++的老铁 主要内容含: 欢迎订阅 YY 滴C++专栏!更多干货持续更新!以下是传送门! YY的《C++》专栏 YY的《C++11》专栏 YY的《Linux》专栏 YY的《数据结构》专栏 YY的《C语言基础》专栏 YY的《

    2024年02月04日
    浏览(57)
  • 【数据结构与算法】:10道链表经典OJ

    思路1:遍历原链表,将 val 所在的节点释放掉。(太麻烦) 思路2:创建新链表,再遍历原链表,找到不为 val 的节点尾插到新链表。 思路1代码实现如下: 注意: 1.当链表为空时,直接返回NULL即可。 2.当尾插上最后一个有效节点时,此时它的 next 可能还与最后一个节点相链接,

    2024年04月14日
    浏览(39)
  • 头歌数据结构实训参考---十大经典排序算法

    可通过 目录 快速查阅对应排序算法

    2024年02月04日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包