基于STM32F103C8T6的端口重映射及定时器输出PWM控制

这篇具有很好参考价值的文章主要介绍了基于STM32F103C8T6的端口重映射及定时器输出PWM控制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

#一、端口重映射原理及部分/完全重映射
#二、端口重映射的配置
#三、PWM控制
##1、通用定时器输出PWM
##2、PWM的工作原理
##3、PWM的内部运作机制
##4、PWM的模式
##5、自动加载的预载寄存器
#四、定时器输出PWM结构体及库函数的配置
#五、项目硬件
#六、项目代码

一、端口重映射原理及部分/完全重映射

每个外设都有若干个输入输出引脚,一般这些引脚也都不是固定不变的,但为了让开发工程师更好的安排引脚的功能和走向,引入了重映射的功能。也就是一个外设的引脚除了具有默认的端口外,也还可以设置重映寄存器来把这个外设映射到其他GPIO端口。方便硬件工程师布线,减少干扰。
stm32f103c8t6 pwm输出引脚,stm32,单片机
部分重映射:
功能外设的部分引脚重新映射,还有一部分引脚是原来的默认引脚,简言之,外设的功能不止能在默认引脚使用,还可以在其他引脚使用。

完全重映射:
功能外设的所有引脚都是重新映射。

stm32f103c8t6 pwm输出引脚,stm32,单片机
二、端口重映射的配置

1.使能GPIO引脚(重映射后的GPIO引脚)
2.使能功能外设
3.使能AFIO时钟,重映射必须使能AFIO时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);
4.开启重映射:
void GPIO_PinRemapConfig(uint32_t GPIO_Remap,FunctionalState NewState);

三、PWM控制

1、通用定时器输出PWM

以TIM3为例,STM32的通用定时器分为TIM2、TIM3、TIM4、TIM5,每个定时器都有独立的四个通道可以用来作为:输入捕获,输出比较,PWM输出,单脉冲模式输出等。

STM32的定时器除了TIM6和TIM7(基本定时器)之外,其他的定时器都可以产生PWM波输出,高级定时器TIM1,TIM8可以同时产生7路PWM输出,而通用定时器可以同时产生4路PWM输出,这样STM32可以最多同时输出30路PWM输出。
stm32f103c8t6 pwm输出引脚,stm32,单片机
2、PWM的工作原理

以向上计数为例,讲述PWM原理:

1.在PWM输出模式下除了CNT(计数器当值),ARR(自动重装载值),CCRx(捕获/比较寄存器值)
2.在CNT小于CCRx时,TIMx_CHx通道输出低电平
3.在CNT大于或等于CCRx时,TIM_CHx通道输出高电平

所谓脉宽调制信号(PWM波),就是一个TIMx_ARR自动重装载寄存器确定频率(由它决定pWM周期),TIM_CCRx寄存器确定占空比信号。
stm32f103c8t6 pwm输出引脚,stm32,单片机

3、PWM的内部运作原理

CCR1:设置捕获比较器寄存器,设置比较值
CCMR1:设置PWM模式1或者PWM模式2
CCER:
P位:输出/捕获:设置极性:0高电平有效,1低电平有效
E位:输出/捕获:使能串口
stm32f103c8t6 pwm输出引脚,stm32,单片机
4、PWM的模式

1)模式一:边沿对齐模式

向上计数时:当TIMx_CNT<TIM_CCRx时通道1为有效电平,否则为无效电平;
向下计数时:一旦TIMx_CNT>TIMx_CCRx,CCR1通道1为无效电平,否则为有限电平;

stm32f103c8t6 pwm输出引脚,stm32,单片机

2)模式二:中央对齐模式

向上计数时:当TIMx_CNT<TIMx_CCRx时通道1为无效电平,否则为有效电平;
向下计数时:一旦TIMx_CNT>TIMx_CCRx,CCR1通道1为有效电平,否则为无效电平;
stm32f103c8t6 pwm输出引脚,stm32,单片机
5、自动加载的预加载寄存器

stm32f103c8t6 pwm输出引脚,stm32,单片机
stm32f103c8t6 pwm输出引脚,stm32,单片机
APER=1,ARR立即生效
APER=2,ARR下个周期生效
void TIM_ARRPreloadConfig(TIM_TypeDef * TIMx,FunctionalState NewState);

四、定时器输出PWM结构体及库函数的配置
1)打开时钟:GPIO时钟、TIM定时器时钟、部分重映射时钟
2)配置GPIO结构体
3)配置通用定时器结构体
4)配置定时输出PWM结构体
5)在主函数中配置PWM比较值

五、项目硬件

SG90电机(舵机)

硬件接线:
红线:3.3V/5V
黑线:GND
黄线:信号线

stm32f103c8t6 pwm输出引脚,stm32,单片机
六、项目代码

motor.c

#include "stm32f10x.h"
#include "motor.h"


void motor_config(void)
{
	
	  GPIO_InitTypeDef GPIO_Motorinit;//配置GPIO结构体初始化
	  TIM_TimeBaseInitTypeDef TIM_Motorinit;//配置定时器结构体初始化
	  TIM_OCInitTypeDef TIMPWM_Motorinit;//配置舵机定时器结构体初始化
	
	  //1.打开时钟
	  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);//配置GPIO时钟
	  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);//配置定时器时钟
	  RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);//配置引脚复用时钟
	
	  GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3,ENABLE);//配置重映射模式为部分重映射
	
	
	  //2.配置GPIO结构
    GPIO_Motorinit.GPIO_Mode  =  GPIO_Mode_AF_PP;//复用推挽输出
	  GPIO_Motorinit.GPIO_Pin   =  GPIO_Pin_5;//pin口配置为5
	  GPIO_Motorinit.GPIO_Speed =  GPIO_Speed_50MHz;//速度配置为50Mhz 
	
	  GPIO_Init(GPIOB,&GPIO_Motorinit);//配置GPIO初始化函数
	
	  //3.配置通用定时器结构体
	  TIM_Motorinit.TIM_ClockDivision  =  TIM_CKD_DIV1;//设置时钟不分频
	  TIM_Motorinit.TIM_CounterMode    =  TIM_CounterMode_Up;//设置计数方式为向上计数
	  TIM_Motorinit.TIM_Period         =  200-1;//设置在下一个更新事件装入活动的自动重装载值为199
	  TIM_Motorinit.TIM_Prescaler      =  7200-1;//TIM时钟频率预分频值为7199
	  
	  TIM_TimeBaseInit(TIM3,&TIM_Motorinit);	//配置定时器初始化函数
	
	  //4.配置定时去输出PWM结构体
    TIMPWM_Motorinit.TIM_OCMode      = TIM_OCMode_PWM1;//配置PWM定时器模式为1
		TIMPWM_Motorinit.TIM_OutputState = TIM_OutputState_Enable;//使能PWM比较输出
		TIMPWM_Motorinit.TIM_OCPolarity  = TIM_OCNPolarity_Low;//选择有效输出的极性
	  
		TIM_OC2Init(TIM3,&TIMPWM_Motorinit);//配置初始化函数
		TIM_Cmd(TIM3,ENABLE);//使能PWM输出
	  TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Enable);//自动加载的预装载寄存器使能
			  
}





motor.h

#include "stm32f10x.h"

void motor_config(void);


main.c

#include "stm32f10x.h"
#include "main.h"
#include "LED.h"
#include "usart.h"
#include "relay.h"
#include "shake.h"
#include "exti.h"
#include "tim.h"
#include "motor.h"

void delay(uint16_t time)//延迟函数
{
		uint16_t i=0;
	  while(time--)
		{
				i=12000;
			  while(i--);
		}
}



int  main()
{
	 uint16_t pwmval=155;//定义变量pwmval
	 usart_init();//串口初始化
	 tim_config();//定时器初始化
	 LED_Init();//LED初始化
	 motor_config();//PWM初始化
   
	 while(1)
	 {
			for(pwmval=195;pwmval>=175;pwmval=-5)
		  {
					TIM_SetCompare2(TIM3,pwmval);
			    delay(500);
		  }
	 
	 
	 }
}




	




usart.c(串口)

#include "stm32f10x.h"
#include "usart.h"
#include <stdio.h>


void usart_init(void)
{
	  
		GPIO_InitTypeDef gpioinstructure;//GPIO结构体初始化函数
	  USART_InitTypeDef usartinstructure;//USART结构体初始化函数
	  NVIC_InitTypeDef  nvicinstructure;//中断控制器结构体初始化函数
	  
	  NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//配置中断控制器优先抢占级组
		
	//1.配置GPIO、USART、引脚复用时钟
		RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);//配置GPIOA时钟
		RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);//配置引脚复用时钟
		RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);//配置USART时钟
		
	//2.配置GPIO结构体
	   
    //配置PA9 TX 输出引脚
		gpioinstructure.GPIO_Mode  =  GPIO_Mode_AF_PP;//复用推挽输出
	  gpioinstructure.GPIO_Pin   =  GPIO_Pin_9 ;//引脚9
	  gpioinstructure.GPIO_Speed =  GPIO_Speed_50MHz;//速度为50Mhz
	
	  GPIO_Init(GPIOA,&gpioinstructure);//GPIO初始化
	
	  //配置PA10 RX 接收引脚
	  gpioinstructure.GPIO_Mode  = GPIO_Mode_IN_FLOATING;//浮空输出
	  gpioinstructure.GPIO_Pin   = GPIO_Pin_10;//引脚10
		
		GPIO_Init(GPIOA,&gpioinstructure);//GPIO初始化
		
	//3.配置串口的结构体
	  usartinstructure.USART_BaudRate = 115200;//波特率为115200
		usartinstructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件流配置
		usartinstructure.USART_Mode = USART_Mode_Rx|USART_Mode_Tx ;//接收模式
		usartinstructure.USART_Parity = USART_Parity_No;//无校验位
		usartinstructure.USART_StopBits = USART_StopBits_1;//一个停止位
		usartinstructure.USART_WordLength = USART_WordLength_8b;//有效数据位为8位
    
    USART_Init(USART1,&usartinstructure);//初始化串口1
    
    USART_Cmd(USART1,ENABLE);	//使能串口1
		
		USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);//串口中断配置
		
	//4.配置中断控制器的结构
	  nvicinstructure.NVIC_IRQChannel  =  USART1_IRQn;//中断通道
		nvicinstructure.NVIC_IRQChannelCmd = ENABLE; //通道使能
		nvicinstructure.NVIC_IRQChannelPreemptionPriority = 1;//抢占优先级配置为1
		nvicinstructure.NVIC_IRQChannelSubPriority = 1;//子优先级配置为1
		
	  NVIC_Init(&nvicinstructure);//中断控制器初始化
			  
}


//发送字符
void USARTSendByte(USART_TypeDef* USARTx, uint16_t Data)
{
		USART_SendData(USARTx, Data);
	  while(USART_GetFlagStatus(USARTx,USART_FLAG_TXE)==RESET);
}


//发送字符串
void USARTSendStr(USART_TypeDef* USARTx, char *str)
{
		uint16_t i=0;
	  do
		{
			  USARTSendByte(USARTx,*(str+i));
			  i++;
		}while(*(str+i)!='\0');
		
		while(USART_GetFlagStatus(USARTx,USART_FLAG_TC)==RESET);
		

}

//printf函数的重映射
int fputc(int ch,FILE *f)
{
		USART_SendData(USART1,(uint8_t)ch);//发送
	  while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);//发送数据寄存器空标志位判断
	  
		return (ch);
	
}


int fgetc(FILE *f)
{
		while(USART_GetFlagStatus(USART1,USART_FLAG_RXNE)==RESET);//接收数据寄存器非空标志位判断

    return (int)USART_ReceiveData(USART1);//返回接收到的字符
}


 




		



usart.h文章来源地址https://www.toymoban.com/news/detail-642616.html

#include "stm32f10x.h"
#include <stdio.h>

void usart_init(void);
void USARTSendByte(USART_TypeDef* USARTx, uint16_t Data);
void USARTSendStr(USART_TypeDef* USARTx, char *str);





到了这里,关于基于STM32F103C8T6的端口重映射及定时器输出PWM控制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于stm32f103c8t6的fft频率计

    之前项目中需要用到正弦信号的频率测量,也参考了几个大佬的博客(链接如下),但可能是由于stm32的型号不匹配,虽然也在网上查了一些需要修改的地方,但结果一直不太对,后来经过自己摸索结果终于对了,在这里给大家分享下,具体原理不在赘述。 参考的部分大佬博

    2024年02月14日
    浏览(61)
  • STM32f103c8t6模板的搭建-基于正点例程

           笔者认为正点编写的官方例程结构较为整洁,可以便于后期的例程开发,如果开发者对于项目开发中芯片要求较高的话,有很多人会选择正点的开发板,但是通常大多数是stm32初学者会选择用价格更为便宜的c8t6来进行学习,而正点选用的教程开发板大多都是些RC、ZE、

    2024年02月06日
    浏览(66)
  • 基于STM32F103C8T6ADC检测交流电压

    上篇文章写了硬件部分的实现思路,通过采样电阻的到小电压后经过二级放大电路得到单片机可处理的交流电压,此文介绍了如何采用单片机采集交流电压以及stm32ADC外设的使用。首先是硬件电路部分。  电路没有采用核心板,而是直接将芯片焊接到主板上,采用type-c接口供

    2024年02月12日
    浏览(54)
  • 基于STM32F103C8T6的HC-06蓝牙通信

    如果朋友们 遇到了如下问题 ,可以仔细借鉴本文章和另一篇专门讲解 蓝牙通信问题 的文章,一定能够解决你在蓝牙通信时遇到的诸多困难 1.在调试蓝牙模块AT指令时无返回值 2.身边 无USB转TTL模块 可以直接调试蓝牙模块(本人就是由于无模块花了了整整一天才调试成功)

    2024年02月03日
    浏览(61)
  • 基于stm32f103c8t6的定时器详解(持续更新)

    先声明:stm32f103c8t6中没有基本定时器、只有TIM1-TIM4:分别是高级定时器和通用定时器(对照下图请自行阅读stm32f103x的datasheet) 1、定时器功能:定时、输出比较、输入捕获、互补输出,其中基本定时器只有定时功能、通用定时器只没有互补输出功能、高级定时器具有所有功能

    2023年04月24日
    浏览(65)
  • HX711压力传感器(基于STM32F103C8T6)

    HX711模块是我们目前比较常见的压力传感器模块,主要的作用是用来做压力检测,重量监测等等。博主的这篇博文主要实现功能为,在对重量或者压力进行监测的同时,可以累加或者清零数值,在此基础上就可以对比如饮水量进行统计等等。 HX711模块是市面上比较常见的模块

    2024年02月11日
    浏览(53)
  • [STM32F103C8T6]基于stm32的循迹,跟随,避障智能小车

    目录 1.小车驱动主要是通过L9110S模块来驱动电机 motor.c 2.我们可以加入串口控制电机驱动(重写串口接收回调函数,和重定向printf) Uart.c main.c  3.点动功能 uart.c main.c 为什么使用的是HAL_Delay()要设置滴答定时器的中断优先级呢? 4.小车PWM调速,  6.跟随功能 7.避障功能 超声波测距

    2024年02月13日
    浏览(54)
  • 基于STM32F103C8T6的UAV飞控板硬件设计

    一、主控单元:         主控单元基于意法半导体公司的STM32F103C8T6单片机进行设计。STM32F103C8T6DE 内核为ARM Cortex-M3;最大主频:72MHz ;工作电压范围:2V~3.6V ;程序存储容量:64KB; 程序存储器类型:FLASH ;RAM总容量:20KB; GPIO端口数量:37 ;封装为LQFP-48;串行单线调试(

    2024年02月08日
    浏览(54)
  • 基于stm32f103c8t6及AS608-----指纹锁项目

              博主纯小白, 本文适合于初学者,大佬还请勿喷,欢迎提出意见,有纰漏之处将及时纠正。 在浅学了stmf103c8t6后,想着依据现在所拥有的知识和能力做一个小项目。 注:工程代码在文章末尾。 掌握C语言基础....这个最基础啦... 接触过类似单片机,稍微看得懂芯片

    2023年04月09日
    浏览(82)
  • 功耗测评 | STM32F103C8T6

    STM32F103C8T6 MCU越来越广泛的应用在生产生活的各个领域,外接丰富的传感器、功能模块、通信模块、显示存储等可以形成各种可样的产品项目应用。对于功耗要求比较高的产品,一般会选择STM32L系列的MCU,但是从功耗的评测角度,逻辑上是基本相似的。 在很多应用场合中都对

    2024年02月07日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包