如何用随机方法求解组合优化问题(一)

这篇具有很好参考价值的文章主要介绍了如何用随机方法求解组合优化问题(一)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

什么是组合优化问题

定义

  • 优化问题

    \(x\) 是决策变量,\(D\)\(x\) 的定义域,\(f(x)\) 是指标函数,\(g(x)\) 是约束条件。则优化问题可以表示为求解满足 \(g(x)\)\(f(x)\) 最小值问题。即:

    \[\min_{x\in D}(f(x)|g(x)) \]
  • 组合优化问题

    如果在定义域 \(D\) 上,满足约束条件 \(g(x)\) 的解的总数是有限的,则优化问题成为组合优化问题。

常见的组合优化问题

  1. 旅行商问题(TSP)

    一个商人去n个城市卖货,从所在城市出发,每个城市去一次且仅去一次,并最后回到出发城市。问如何安排才能
    使得商人走的路径最短。

  2. 0-1背包问题

    给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。

组合优化问题的实际意义

以旅行商问题为例:

  • 交通运输
  • 飞机航班的安排
  • 快递员送快递
  • 校车的行驶路线
  • 印刷电路板打孔

组合优化问题的难点

旅行商问题可能的行走路线为 \(n!\)

复杂度是阶乘级别的,这意味着使用穷举法遍历所有决策计算最优解的思路是不可行的。

求解思路

引入随机因素求解满意解

  • 最优解与满意解

    大多数时候组合优化问题求最优解是十分困难的(复杂度很高)。如果退一步,只求相对较优的“满意解”,大多数时候可以满足“满意解符合实际问题的需求”且“复杂度大大降低”。

  • 引入随机因素

    满意解往往是局部最优解,在设计算法的时候可以引入随机因素,考虑数学期望,并在理论上认为其可以收敛于较优的局部最优解。文章来源地址https://www.toymoban.com/news/detail-643197.html

到了这里,关于如何用随机方法求解组合优化问题(一)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 如何用随机方法求解组合优化问题(四)

    这是一篇笔记,是对于B站up主马少平的视频(第四篇 如何用随机方法求解组合优化问题(四))的学习与记录。 这篇笔记还没有介绍到模拟退火算法,而是记录退火这一物理过程以及相关的公式。 最主要的内容是如何将退火过程的特点迁移到后续的算法设计中。 退火是固体

    2024年02月12日
    浏览(33)
  • 如何用随机方法求解组合优化问题(七)

    这是一篇笔记,是对于B站up主马少平的视频(第四篇 如何用随机方法求解组合优化问题(七))的学习与记录。 一个商人要访问 (n) 个城市,每个城市访问一次,并且只能访问一次,最后再回到出发城市。 问如何规划才能使得行走的路径长度最短。 旅行商问题的解空间非

    2024年02月12日
    浏览(42)
  • OM | 强化学习 + 约束规划求解组合优化问题

    组合优化在航空航天、交通规划以及经济学等众多学科领域中有广泛应用,其目标是在有限集中寻找最优解。然而状态空间过大的问题让目前组合优化变得棘手。在过去的几年中,使用深度强化学习(deep reinforcement learning,DRL)解决组合优化问题受到广泛关注。然而,现有的

    2024年02月10日
    浏览(48)
  • 机器学习笔记之最优化理论与方法(九)无约束优化问题——常用求解方法(下)

    上一节介绍了 牛顿法、拟牛顿法 。本节将继续以 拟牛顿法 为基础,介绍 DFP , BFGS text{DFP},text{BFGS} DFP , BFGS 方法 。 经典牛顿法缺陷与修正牛顿法 关于 经典牛顿法 中关于 下降方向 D k ( k = 1 , 2 , ⋯   , ∞ ) mathcal D_k(k=1,2,cdots,infty) D k ​ ( k = 1 , 2 , ⋯ , ∞ ) 的 数学符号 表

    2024年02月09日
    浏览(54)
  • 机器学习笔记之最优化理论与方法(七)无约束优化问题——常用求解方法(上)

    本节将介绍 无约束优化问题 的常用求解方法,包括 坐标轴交替下降法、最速下降法 。 本节是对优化算法(十~十七)最速下降法(梯度下降法)的理论补充,其中可能出现一些定理的 证明过程 这里不再赘述,并在相应位置 附加链接 。 从本节开始,将介绍 四大类 无约束优化问

    2024年02月10日
    浏览(51)
  • 优化|一阶方法:求解不具有凸性和lipschitz连续性的复合问题

    论文解读者:陈康明,赵田田,李朋 对于大多数一阶算法,我们会在收敛性分析时假设函数是凸的,且梯度满足全局 Lipschitz 条件。而本文中,对于某一类特殊函数。我们不仅不要求函数是凸的,也不再要求梯度满足全局 Lipschitz 条件。 考虑复合优化问题 ( P ) min ⁡ { Ψ ( x

    2024年02月12日
    浏览(51)
  • 【两阶段鲁棒优化】利用列-约束生成方法求解两阶段鲁棒优化问题(Python代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 CCGKKT 2.2  CCGSD 2.3  SPKKT 2.4 SDSP 2.5 

    2023年04月15日
    浏览(58)
  • C# PSO 粒子群优化算法 遗传算法 随机算法 求解复杂方程的最大、最小值

    复杂方程可以自己定义,以下是看别人的题目,然后自己来做 以下是计算结果

    2024年02月09日
    浏览(43)
  • 运筹系列87:julia求解随机动态规划问题入门

    随机动态规划问题的特点是: 有多个阶段,每个阶段的随机性互不相关,且有有限个实现值 (finite realizations) 具有马尔可夫性质,即每个阶段只受上一个阶段影响,可以用状态转移方程来描述阶段与阶段之间的变化过程。 我们使用julia的SDDP算法包来求解随机动态规划问题。

    2024年01月16日
    浏览(42)
  • C# 随机法求解线性规划问题 蒙特卡洛

    线性规划问题: max=3 x1+2 x2 x1+2 x2=5 2 x1+x2=4 4 x1+3 x2=9 x1=0 x2=0 正确的结果:x1=1.5; x2=1, max z=6.5

    2024年02月13日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包