1、消息的发送与接收
- 生产者主要的对象有: KafkaProducer , ProducerRecord 。
- 其中KafkaProducer 是用于发送消息的类, ProducerRecord 类用于封装Kafka的消息。
KafkaProducer 的创建需要指定的参数和含义:
参数 | 说明 |
bootstrap.servers | 配置生产者如何与broker建立连接。该参数设置的是初始化参数。如果生产者需要连接的是Kafka集群,则这里配置集群中几个broker的地址,而不是全部,当生产者连接上此处指定的broker之后,在通过该连接发现集群中的其他节点。 |
key.serializer | 要发送信息的key数据的序列化类。设置的时候可以写类名,也可以使用该类的Class对象。 |
value.serializer | 要发送消息的alue数据的序列化类。设置的时候可以写类名,也可以使用该类的Class对象。 |
acks | 默认值:all。 acks=0:
acks=1
acks=all
|
retries | retries重试次数
|
其他参数可以从org.apache.kafka.clients.producer.ProducerConfig 中找到。
- 消费者生产消息后,需要broker端的确认,可以同步确认,也可以异步确认。
- 同步确认效率低,异步确认效率高,但是需要设置回调对象。
生产者:
package com.example.producer;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.header.Header;
import org.apache.kafka.common.header.internals.RecordHeader;
import org.apache.kafka.common.serialization.IntegerSerializer;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
public class MyProducer1 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
Map<String, Object> configs = new HashMap<>();
// 指定初始连接用到的broker地址,如果是集群,则可以通过此初始连接发现集群中的其他broker
configs.put("bootstrap.servers", "192.168.80.121:9092");
// 指定key的序列化类
configs.put("key.serializer", IntegerSerializer.class);
// 指定value的序列化类
configs.put("value.serializer", StringSerializer.class);
/* configs.put("acks", "all");
configs.put("retries", 3); */
// 创建kafkaProducer对象
KafkaProducer<Integer, String> producer = new KafkaProducer<Integer, String>(configs);
// 用于设置用户自定义的消息头字段
List<Header> headers = new ArrayList<>();
headers.add(new RecordHeader("biz.name", "producer.demo".getBytes()));
// 封装消息
ProducerRecord<Integer, String> record = new ProducerRecord<Integer, String>(
"topic_1", // 主题名称
0, // 分区编号,现在只有一个分区,所以是0
0, // 数字作为key
"hello world", // 字符串作为value
headers
);
// 消息的同步确认
/* Future<RecordMetadata> future = producer.send(record);
RecordMetadata metadata = future.get();
System.out.println("消息的主题:" + metadata.topic());
System.out.println("消息的分区:" + metadata.partition());
System.out.println("消息的偏移量:" + metadata.offset()); */
// 消息的异步确认
producer.send(record, new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception e) {
if (e==null) {
System.out.println("消息的主题:" + metadata.topic());
System.out.println("消息的分区:" + metadata.partition());
System.out.println("消息的偏移量:" + metadata.offset());
}else{
System.out.println("异常消息:"+e.getMessage());
}
}
});
// 关闭生产者
producer.close();
}
}
消费者:
package com.example.consumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.IntegerDeserializer;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.function.Consumer;
public class MyConsumer {
public static void main(String[] args) {
Map<String, Object> configs = new HashMap<>();
// 指定初始连接用到的broker地址
// configs.put("bootstrap.servers", "192.168.80.121:9092");
// 上面方式如果怕写错,可以尝试下面这种方法
configs.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.80.121:9092");
// 指定key的反序列化类
configs.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class);
// 指定value的反序列化类
configs.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
// 配置消费组id
configs.put(ConsumerConfig.GROUP_ID_CONFIG, "consumer_demo");
// earliest:如果找不到当前消费者的有效偏移量,自自动重置到最开始
// latest:表示直接重置到消息偏移量的最后一个
configs.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
KafkaConsumer<Integer, String> consumer = new KafkaConsumer<Integer, String>(configs);
// 先订阅,在消费
consumer.subscribe(Arrays.asList("topic_1"));
/* while (true) {
ConsumerRecords<Integer, String> consumerRecords = consumer.poll(3_000);
} */
// 如果主题中没有可消费的消息,则该方法可以放到while循环中,每过3秒重新拉取一次
// 如果还没有拉取到,过三秒再次拉取,防止while循环过于密集的poll调用
// 批量从主题的分区拉取消息
ConsumerRecords<Integer, String> consumerRecords = consumer.poll(3_000); // 指定拉取消息的时间间隔
// 遍历本次从主题分区拉取的批量消息
consumerRecords.forEach(new Consumer<ConsumerRecord<Integer, String>>() {
@Override
public void accept(ConsumerRecord<Integer, String> record) {
System.out.println("========================================");
System.out.println("消息头字段:" + Arrays.toString(record.headers().toArray()));
System.out.println("消息的key:" + record.key());
System.out.println("消息的偏移量:" + record.offset());
System.out.println("消息的分区号:" + record.partition());
System.out.println("消息的序列化key字节数:" + record.serializedKeySize());
System.out.println("消息的序列化value字节数:" + record.serializedValueSize());
System.out.println("消息的时间戳:" + record.timestamp());
System.out.println("消息的时间戳类型:" + record.timestampType());
System.out.println("消息的主题:" + record.topic());
System.out.println("消息的值:" + record.value());
}
});
consumer.close();
}
}
2、SpringBoot Kafka
(1)pom.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.2.8.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.example</groupId>
<artifactId>demo_02_springboot-kafka</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>demo_02_springboot-kafka</name>
<description>demo_02_springboot-kafka</description>
<properties>
<java.version>8</java.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
<exclusions>
<exclusion>
<groupId>org.junit.vintage</groupId>
<artifactId>junit-vintage-engine</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>
(2)application.properties
spring.application.name=springboot-kafka-02
server.port=8080
# 用于建立初始连接的broker地址
spring.kafka.bootstrap-servers=192.168.80.121:9092
# producer用到的key和value的序列化类
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.IntegerSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
# 默认的批处理记录数
spring.kafka.producer.batch-size=16384
# 32MB的总发送缓存
spring.kafka.producer.buffer-memory=33554432
# consumer用到的key和value的反序列化类
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.IntegerDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
# consumer的消费组id
spring.kafka.consumer.group-id=springboot-consumer02
# 是否自动提交消费者偏移量
spring.kafka.consumer.enable-auto-commit=true
# 每隔100ms向broker提交一次偏移量
spring.kafka.consumer.auto-commit-interval=100
# 如果该消费者的偏移量不存在,则自动设置为最早的偏移量
spring.kafka.consumer.auto-offset-reset=earliest
(3)启动类
package com.example.demo;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Demo02SpringbootKafkaApplication {
public static void main(String[] args) {
SpringApplication.run(Demo02SpringbootKafkaApplication.class, args);
}
}
(4)KafkaConfig(在这里可以进行主题的创建、自定义了kafkaAdmin对象等一系列配置,也可以省略,如果kafka在连接主题时,发现没有,KafkaAdmin这个类会自动帮我们创建)
package com.example.demo.config;
import org.apache.kafka.clients.admin.NewTopic;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class KafkaConfig {
// 创建主题
@Bean
public NewTopic topic1() {
return new NewTopic("nptc-01",3, (short) 1);
}
@Bean
public NewTopic topic2() {
return new NewTopic("nptc-02",5, (short) 1);
}
}
(5)生产者
同步方式
package com.example.demo.controlller;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.util.concurrent.ListenableFuture;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
@RestController
public class KafkaSyncProducerController {
@Autowired
private KafkaTemplate<Integer, String> template;
@RequestMapping("send/sync/{message}")
public String send(@PathVariable String message) throws ExecutionException, InterruptedException {
ListenableFuture<SendResult<Integer, String>> future = template.send("topic-spring-01", 0, 0, message);
// 同步发送消息
SendResult<Integer, String> sendResult = future.get();
RecordMetadata metadata = sendResult.getRecordMetadata();
System.out.println(metadata.topic() + "\t" + metadata.partition() + "\t" + metadata.offset());
return "success";
}
}
异步回调方式文章来源:https://www.toymoban.com/news/detail-643243.html
package com.example.demo.controlller;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.util.concurrent.ListenableFuture;
import org.springframework.util.concurrent.ListenableFutureCallback;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class KafkaAsyncProducerController {
@Autowired
private KafkaTemplate<Integer, String> template;
@RequestMapping("send/async/{message}")
public String send(@PathVariable String message) {
ListenableFuture<SendResult<Integer, String>> future = (ListenableFuture<SendResult<Integer, String>>) template.send("topic-spring-01", 0, 1, message);
future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {
@Override
public void onFailure(Throwable ex) {
System.out.println("发送消息失败:" + ex.getMessage());
}
@Override
public void onSuccess(SendResult<Integer, String> result) {
RecordMetadata metadata = result.getRecordMetadata();
System.out.println("发送消息成功:" + metadata.topic() + "\t" + metadata.partition() + "\t" + metadata.offset());
}
});
return "success";
}
}
(6)消费者文章来源地址https://www.toymoban.com/news/detail-643243.html
package com.example.demo.consumer;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
@Component
public class MyConsumer {
@KafkaListener(topics = "topic-spring-01")
public void onMessage(ConsumerRecord<Integer, String> record) {
System.out.println("消费者收到的消息:" + record.topic() + "\t" + record.partition() + "\t" + record.offset() + "\t" + record.key() + "\t" + record.value());
}
}
到了这里,关于Java代码操作Kafka的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!