基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务

这篇具有很好参考价值的文章主要介绍了基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、ChatYuan-large-v2

ChatYuan-large-v2是一个开源的支持中英双语的功能型对话语言大模型,与其他 LLM 不同的是模型十分轻量化,并且在轻量化的同时效果相对还不错,仅仅通过0.7B参数量就可以实现10B模型的基础效果,正是其如此的轻量级,使其可以在普通显卡、 CPU、甚至手机上进行推理,而且 INT4 量化后的最低只需 400M

v2 版本相对于以前的 v1 版本,是使用了相同的技术方案,但在指令微调、人类反馈强化学习、思维链等方面进行了优化。

在本专栏前面文章介绍了 ChatYuan-large-v2langchain 相结合的使用,地址如下:

LangChain 本地化方案 - 使用 ChatYuan-large-v2 作为 LLM 大语言模型

本篇文章以 ChatYuan-large-v2 模型为基础 Fine-tuning 广告生成 任务。

二、数据集处理

数据集这里使用 ChatGLM 官方在 Fine-tuning 中使用到的 广告生成 数据集。

下载地址如下:

https://drive.google.com/file/d/13_vf0xRTQsyneRKdD1bZIr93vBGOczrk/view

数据已 JSON 的形式存放,分为了 traindev 两种类型:

基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务,机器学习,语言模型,人工智能,自然语言处理
数据格式如下所示:

{
    "content":"类型#裤*版型#宽松*风格#性感*图案#线条*裤型#阔腿裤",
    "summary":"宽松的阔腿裤这两年真的吸粉不少,明星时尚达人的心头爱。毕竟好穿时尚,谁都能穿出腿长2米的效果宽松的裤腿,当然是遮肉小能手啊。上身随性自然不拘束,面料亲肤舒适贴身体验感棒棒哒。系带部分增加设计看点,还让单品的设计感更强。腿部线条若隐若现的,性感撩人。颜色敲温柔的,与裤子本身所呈现的风格有点反差萌。"
}
{
    "content":"类型#裤*版型#宽松*风格#性感*图案#线条*裤型#阔腿裤",
    "summary":"宽松的阔腿裤这两年真的吸粉不少,明星时尚达人的心头爱。毕竟好穿时尚,谁都能穿出腿长2米的效果宽松的裤腿,当然是遮肉小能手啊。上身随性自然不拘束,面料亲肤舒适贴身体验感棒棒哒。系带部分增加设计看点,还让单品的设计感更强。腿部线条若隐若现的,性感撩人。颜色敲温柔的,与裤子本身所呈现的风格有点反差萌。"
}
{
    "content":"类型#裙*风格#简约*图案#条纹*图案#线条*图案#撞色*裙型#鱼尾裙*裙袖长#无袖",
    "summary":"圆形领口修饰脖颈线条,适合各种脸型,耐看有气质。无袖设计,尤显清凉,简约横条纹装饰,使得整身人鱼造型更为生动立体。加之撞色的鱼尾下摆,深邃富有诗意。收腰包臀,修饰女性身体曲线,结合别出心裁的鱼尾裙摆设计,勾勒出自然流畅的身体轮廓,展现了婀娜多姿的迷人姿态。"
}
{
    "content":"类型#上衣*版型#宽松*颜色#粉红色*图案#字母*图案#文字*图案#线条*衣样式#卫衣*衣款式#不规则",
    "summary":"宽松的卫衣版型包裹着整个身材,宽大的衣身与身材形成鲜明的对比描绘出纤瘦的身形。下摆与袖口的不规则剪裁设计,彰显出时尚前卫的形态。被剪裁过的样式呈现出布条状自然地垂坠下来,别具有一番设计感。线条分明的字母样式有着花式的外观,棱角分明加上具有少女元气的枣红色十分有年轻活力感。粉红色的衣身把肌肤衬托得很白嫩又健康。"
}
{
    "content":"类型#裙*版型#宽松*材质#雪纺*风格#清新*裙型#a字*裙长#连衣裙",
    "summary":"踩着轻盈的步伐享受在午后的和煦风中,让放松与惬意感为你免去一身的压力与束缚,仿佛要将灵魂也寄托在随风摇曳的雪纺连衣裙上,吐露出<UNK>微妙而又浪漫的清新之意。宽松的a字版型除了能够带来足够的空间,也能以上窄下宽的方式强化立体层次,携带出自然优雅的曼妙体验。"
}
{
    "content":"类型#上衣*材质#棉*颜色#蓝色*风格#潮*衣样式#polo*衣领型#polo领*衣袖长#短袖*衣款式#拼接",
    "summary":"想要在人群中脱颖而出吗?那么最适合您的莫过于这款polo衫短袖,采用了经典的polo领口和柔软纯棉面料,让您紧跟时尚潮流。再配合上潮流的蓝色拼接设计,使您的风格更加出众。就算单从选料上来说,这款polo衫的颜色沉稳经典,是这个季度十分受大众喜爱的风格了,而且兼具舒适感和时尚感。"
}

其中任务的方式为根据输入(content)生成一段广告词(summary)。

train.json 共有 114599 条记录,这里为了演示效果取前 50000 条数据进行训练、5000 条数据进行验证:

import os

# 将训练集进行提取
def doHandle(json_path, train_size, val_size, out_json_path):
    train_count = 0
    val_count = 0

    train_f = open(os.path.join(out_json_path, "train.json"), "a", encoding='utf-8')
    val_f = open(os.path.join(out_json_path, "val.json"), "a", encoding='utf-8')

    with open(json_path, "r", encoding='utf-8') as f:
        for line in f:
            if train_count < train_size:
                train_f.writelines(line)
                train_count = train_count + 1
            elif val_count < val_size:
                val_f.writelines(line)
                val_count = val_count + 1
            else:
                break

    print("数据处理完毕!")
    train_f.close()
    val_f.close()


if __name__ == '__main__':
    json_path = "./data/AdvertiseGen/train.json"
    out_json_path = "./data/"
    train_size = 50000
    val_size = 5000
    doHandle(json_path, train_size, val_size, out_json_path)

处理之后可以看到两个生成的文件:

基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务,机器学习,语言模型,人工智能,自然语言处理

下面基于上面的数据格式构建 Dataset

from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
import torch
import json


class SummaryDataSet(Dataset):

    def __init__(self, json_path: str, tokenizer, max_length=300):
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.content_data = []
        self.summary_data = []
        with open(json_path, "r", encoding='utf-8') as f:
            for line in f:
                if not line or line == "":
                    continue
                json_line = json.loads(line)
                content = json_line["content"]
                summary = json_line["summary"]
                self.content_data.append(content)
                self.summary_data.append(summary)
        print("data load , size:", len(self.content_data))

    def __len__(self):
        return len(self.content_data)

    def __getitem__(self, index):
        source_text = str(self.content_data[index])
        target_text = str(self.summary_data[index])

        source = self.tokenizer.batch_encode_plus(
            [source_text],
            max_length=self.max_length,
            pad_to_max_length=True,
            truncation=True,
            padding="max_length",
            return_tensors="pt",
        )
        target = self.tokenizer.batch_encode_plus(
            [target_text],
            max_length=self.max_length,
            pad_to_max_length=True,
            truncation=True,
            padding="max_length",
            return_tensors="pt",
        )

        source_ids = source["input_ids"].squeeze()
        source_mask = source["attention_mask"].squeeze()
        target_ids = target["input_ids"].squeeze()
        target_mask = target["attention_mask"].squeeze()

        return {
            "source_ids": source_ids.to(dtype=torch.long),
            "source_mask": source_mask.to(dtype=torch.long),
            "target_ids": target_ids.to(dtype=torch.long),
            "target_ids_y": target_ids.to(dtype=torch.long),
        }

三、模型训练

下载 ChatYuan-large-v2 模型:

https://huggingface.co/ClueAI/ChatYuan-large-v2/tree/main

基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务,机器学习,语言模型,人工智能,自然语言处理
基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务,机器学习,语言模型,人工智能,自然语言处理

下面基于 ChatYuan-large-v2 进行训练:

import pandas as pd
import torch
from torch.utils.data import DataLoader
import os, time
from transformers import T5Tokenizer, T5ForConditionalGeneration
from gen_dataset import SummaryDataSet


def train(epoch, tokenizer, model, device, loader, optimizer):
    model.train()
    time1 = time.time()
    for _, data in enumerate(loader, 0):
        y = data["target_ids"].to(device, dtype=torch.long)
        y_ids = y[:, :-1].contiguous()
        lm_labels = y[:, 1:].clone().detach()
        lm_labels[y[:, 1:] == tokenizer.pad_token_id] = -100
        ids = data["source_ids"].to(device, dtype=torch.long)
        mask = data["source_mask"].to(device, dtype=torch.long)

        outputs = model(
            input_ids=ids,
            attention_mask=mask,
            decoder_input_ids=y_ids,
            labels=lm_labels,
        )
        loss = outputs[0]
        # 每100步打印日志
        if _ % 100 == 0 and _ != 0:
            time2 = time.time()
            print(_, "epoch:" + str(epoch) + "-loss:" + str(loss) + ";each step's time spent:" + str(
                float(time2 - time1) / float(_ + 0.0001)))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


def validate(epoch, tokenizer, model, device, loader, max_length):
    model.eval()
    predictions = []
    actuals = []
    with torch.no_grad():
        for _, data in enumerate(loader, 0):
            y = data['target_ids'].to(device, dtype=torch.long)
            ids = data['source_ids'].to(device, dtype=torch.long)
            mask = data['source_mask'].to(device, dtype=torch.long)

            generated_ids = model.generate(
                input_ids=ids,
                attention_mask=mask,
                max_length=max_length,
                num_beams=2,
                repetition_penalty=2.5,
                length_penalty=1.0,
                early_stopping=True
            )
            preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in
                     generated_ids]
            target = [tokenizer.decode(t, skip_special_tokens=True, clean_up_tokenization_spaces=True) for t in y]
            if _ % 1000 == 0:
                print(f'Completed {_}')

            predictions.extend(preds)
            actuals.extend(target)
    return predictions, actuals


def T5Trainer(train_json_path, val_json_path, model_dir, batch_size, epochs, output_dir, max_length=300):

    tokenizer = T5Tokenizer.from_pretrained(model_dir)
    model = T5ForConditionalGeneration.from_pretrained(model_dir)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)

    train_params = {
        "batch_size": batch_size,
        "shuffle": True,
        "num_workers": 0,
    }
    training_set = SummaryDataSet(train_json_path, tokenizer, max_length=max_length)
    training_loader = DataLoader(training_set, **train_params)

    val_params = {
        "batch_size": batch_size,
        "shuffle": False,
        "num_workers": 0,
    }

    val_set = SummaryDataSet(val_json_path, tokenizer, max_length=max_length)
    val_loader = DataLoader(val_set, **val_params)

    optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-4)

    for epoch in range(epochs):
        train(epoch, tokenizer, model, device, training_loader, optimizer)
        print("保存模型")
        model.save_pretrained(output_dir)
        tokenizer.save_pretrained(output_dir)
        # 验证
        with torch.no_grad():
            predictions, actuals = validate(epoch, tokenizer, model, device, val_loader, max_length)
            # 验证结果存储
            final_df = pd.DataFrame({"Generated Text": predictions, "Actual Text": actuals})
            final_df.to_csv(os.path.join(output_dir, "predictions.csv"))


if __name__ == '__main__':
    train_json_path = "./data/train.json"
    val_json_path = "./data/val.json"
    # 下载模型目录位置
    model_dir = "chatyuan_large_v2"
    batch_size = 5
    epochs = 1
    max_length = 300
    output_dir = "./model"
	
	# 开始训练
    T5Trainer(
        train_json_path,
        val_json_path,
        model_dir,
        batch_size,
        epochs,
        output_dir,
        max_length
    )

运行后可以看到如下日志打印,训练大概占用 33G 的显存,如果显存不够可以调低些 batch_size 的大小:

基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务,机器学习,语言模型,人工智能,自然语言处理

等待训练结束后:

基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务,机器学习,语言模型,人工智能,自然语言处理

可以在 model 下看到保存的模型:

基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务,机器学习,语言模型,人工智能,自然语言处理

这里可以先看下 predictions.csv 验证集的效果:

基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务,机器学习,语言模型,人工智能,自然语言处理

可以看到模型生成的结果有点不太好,这里仅对前 50000 条进行了训练,并且就训练了一个 epoch ,后面可以增加数据集大小和增加 epoch 应该能达到更好的效果,下面通过调用模型测试一下生成的文本效果。

四、模型测试

# -*- coding: utf-8 -*-
from transformers import T5Tokenizer, T5ForConditionalGeneration
import torch

# 这里是模型下载的位置
model_dir = './model'

tokenizer = T5Tokenizer.from_pretrained(model_dir)
model = T5ForConditionalGeneration.from_pretrained(model_dir)

while True:
    text = input("请输入内容: \n ")
    if not text or text == "":
        continue
    if text == "q":
        break

    encoded_input = tokenizer(text, padding="max_length", truncation=True, max_length=300)
    input_ids = torch.tensor([encoded_input['input_ids']])
    attention_mask = torch.tensor([encoded_input['attention_mask']])

    generated_ids = model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        max_length=300,
        num_beams=2,
        repetition_penalty=2.5,
        length_penalty=1.0,
        early_stopping=True
    )

    reds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in
            generated_ids]

    print(reds)

效果测试:

基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务,机器学习,语言模型,人工智能,自然语言处理文章来源地址https://www.toymoban.com/news/detail-643311.html

到了这里,关于基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Fine-tuning Large Enterprise Language Models via Ontological Reasoning

    本文是LLM系列文章,针对《Fine-tuning Large Enterprise Language Models via Ontological Reasoning》的翻译。 大型语言模型(LLM)利用特定任务的训练数据,将微调作为一种适应不同目标的技术。任务特异性应该与领域定向齐头并进,即LLM的专业化,以准确地处理给定感兴趣领域的任务。然

    2024年02月09日
    浏览(43)
  • LLM(Large Language Model)大语言模型

    语言模型够大,训练的语料够多,涌现出推理能力飙升等   Generative Pre-trained Transformer 3(GPT-3)是最著名的LLM之一,拥有1750亿个参数。该模型在文本生成、翻译和其他任务中表现出显著的性能,在全球范围内引起了热烈的反响,目前OpenAI已经迭代到了GPT-4版本 Generative :能产

    2024年02月15日
    浏览(38)
  • 大型语言模型(LLM, Large Language Models)基模和 Chat 模型之间的区别

    最近看大模型相关的知识,有看到大模型都有基础模型(base)和对话模型(chat),不太清楚什么时候用到基础模型,什么时候用到对话模型,故有此文。 通过了解,最简单的概述就是基于基础模型会训练出一个对话(Chat)模型,对话模型主要用于对话场景,基础模型主要做

    2024年02月21日
    浏览(38)
  • LLM预训练大型语言模型Pre-training large language models

    在上一个视频中,您被介绍到了生成性AI项目的生命周期。 如您所见,在您开始启动您的生成性AI应用的有趣部分之前,有几个步骤需要完成。一旦您确定了您的用例范围,并确定了您需要LLM在您的应用程序中的工作方式,您的下一步就是选择一个要使用的模型。 您首先的选

    2024年02月11日
    浏览(46)
  • 大型语言模型综述,非常详细,格局打开!A Survey of Large Language Models

    返回论文和资料目录 论文地址 项目地址 讲得通俗易懂,且格局拉满!基本覆盖了自ChatGPT以来的AI比较火的事件,还多次提到强人工智能AGI(人工通用智能)。对近几年的大型语言模型( Large Language Models)进行了详细介绍。非常建议感兴趣大模型和强人工智能的读者阅读!!

    2024年02月08日
    浏览(52)
  • 【AI人工智能】用于代码生成的大型语言模型 Large Language Models for Code Generation

      目录 Large Language Models for Code Generation – Part 1用于代码生成的大型语言模型——第 1 部分 Introduction

    2024年02月08日
    浏览(65)
  • 【人工智能】大语言模型简介 —— A Very Gentle Introduction to Large Language Models without the Hype

    目录 【人工智能】大语言模型简介 —— A Very Gentle Introduction to Large Language Models without the

    2024年02月06日
    浏览(42)
  • ChatGPT进阶:利用Fine-tuning训练自己的模型

    ChatGPT是“大力出奇迹”的经典表现,大模型给ChatGPT带来了惊人的智能,但是要训练这样的大模型,可是十分烧钱的,根据OpenAI给出的数据,1700亿参数的Davinci模型从头训练一遍,大概需要耗时3个月,耗资150万美元。那我们普通人或者小公司面对这个高门槛,对自定义模型是

    2024年02月17日
    浏览(49)
  • openai模型个性化训练Embedding和fine-tuning区别

    现在基于自然语言和文档进行对话的背后都是使用的基于嵌入的向量搜索。OpenAI在这方面做的很好,它的Cookbook(github.com/openai/openai-cookbook)上有很多案例,最近他们对文档做了一些更新。 GPT擅长回答问题,但是只能回答它以前被训练过的问题,如果是没有训练过的数据,比如

    2024年02月15日
    浏览(41)
  • AI语音合成 VITS Fast Fine-tuning,半小时合成专属模型,部署训练使用讲解

    项目名:VITS-fast-fine-tuning (VITS 快速微调) 项目地址:https://github.com/Plachtaa/VITS-fast-fine-tuning 支持语言:中、日、英 官方简介: 这个代码库会指导你如何将自定义角色(甚至你自己),加入预训练的VITS模型中,在1小时内的微调使模型具备如下功能: 在 模型所包含的任意两

    2024年02月08日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包