计算机竞赛 - 基于机器视觉的图像拼接算法

这篇具有很好参考价值的文章主要介绍了计算机竞赛 - 基于机器视觉的图像拼接算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要。

再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办法一次将所有你要拍的景物全部拍下来,所以你对该场景从左往右依次拍了好几张图,来把你要拍的所有景物记录下来。那么我们能不能把这些图像拼接成一个大图呢?

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate文章来源地址https://www.toymoban.com/news/detail-643744.html


一、拼接效果

依照惯例, 废话不多说,先上拼接效果

拼接左图:
计算机竞赛 - 基于机器视觉的图像拼接算法,python,java

拼接右图:

计算机竞赛 - 基于机器视觉的图像拼接算法,python,java
拼接效果:
计算机竞赛 - 基于机器视觉的图像拼接算法,python,java

拼接前:
计算机竞赛 - 基于机器视觉的图像拼接算法,python,java
拼接后:
计算机竞赛 - 基于机器视觉的图像拼接算法,python,java

二、算法介绍

1.拼接算法简介

图像拼接技术就是将数张有重叠部分的图像(可能是不同时间、不同视角或者不同传感器获得的)拼成一幅无缝的全景图或高分辨率图像的技术。在医学成像、计算机视觉、卫星数据、军事目标自动识别等领域具有重要意义。

图像拼接目前有很多算法,图像拼接的质量,主要依赖于图像的配准程度,因此通过不同的图像匹配方式将算法分为以下两种:

1.1 基于区域相关拼接算法

该算法比较传统和普遍,从待拼接图像的灰度值出发,对待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法计算其灰度值的差异(1.通过累加各点灰度的差值,2.计算两块区域的对应像素点灰度值的相关系数,相关系数越大,则两块图像的匹配程度越高,3.两者中计算相关系数的效果更好)。对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待拼接图像重叠区域的范围和位置,从而实现图像拼接。
也可以通过FFT 变换将图像由时域变换到频域,然后再进行配准。对位移量比较大的图像,可以先校正图像的旋转,然后建立两幅图像之间的映射关系。

1.2 基于特征相关拼接算法

于特征的配准方法不是直接利用图像的像素值,而是通过像素导出图像的特征,然后以图像特征为标准,对图像重叠部分的对应特征区域进行搜索匹配,该类拼接算法有比较高的健壮性和鲁棒性。

在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。一系列的图像分割技术都被用到特征的抽取和边界检测上。

1.3 拼接算法的基本流程
  • 根据给定图像/集,实现特征匹配
  • 通过匹配特征计算图像之间的变换结构
  • 利用图像变换结构,实现图像映射
  • 针对叠加后的图像,采用APAP之类的算法, 对齐特征点
  • 通过图割方法,自动选取拼接缝
  • 根据multi-band bleing策略实现融合

2. 拼接算法原理

2.1 第一种:特征匹配

特征是要匹配的两个输入图像中的元素,为了给图像提供更好的特征匹配,采用角点匹配,进行定量测量。在视点变化时,角点特征是稳定的。角点检测算法有Harris角点检测算法、SIFT特征点检测算法、FAST角点检测算法、SURF特征点检测算法。
本次实验使用的Opencv stitch源码中默认第一选择是SURF特征点检测,第二是ORB特征点检测。
SURF(Speeded Up Robust
Features)改进了特征的提取和描述方式,用一种更为高效的方式完成特征的提取和描述。它是SIFT的高效变种,也是提取尺度不变特征,算法步骤与SIFT算法大致相同,但采用的方法不一样,SURF算法要比SIFT算法更高效。

2. 2 第二种:计算图像之间的变换结构
  • 2.1.SURF使用Hessian矩阵来检测特征点,该矩阵是x,y方向的二阶导数矩阵,可测量一个函数的局部曲率,其行列式值代表像素点周围的变化量,特征点需取行列式值的极值点。
  • 2.2特征点定位:通过特征点邻近信息插补来定位特征点。
  • 2.3方向定位:通过计算特征点周围像素点x,y方向的哈尔小波变换,并将x,y方向的变换值在xy平面某一角度区间内相加组成一个向量,在所有的向量当中最长的(即x、y分量最大的)即为此特征点的方向。
  • 2.4特征描述子:选定了特征点的方向后,其周围相素点需要以此方向为基准来建立描述子。此时以5 ∗ 5 5 55∗5个像素点为一个子区域,取特征点周围 20 ∗ 20 20 2020∗20个像素点的范围共16个子区域,计算子区域内的x、y方向(此时以平行特征点方向为x、垂直特征点方向为y的哈尔小波转换总和Σdx、ΣdyΣdx、Σdy与其向量长度总和Σ|dx|、Σ|dy|Σ|dx|、Σ|dy|共四个量值,共可产生一个64维的描
  • 2.5如果两个特征点的矩阵迹正负号相同,代表这两个特征具有相同方向上的对比度变化,如果不同,说明这两个特征点的对比度变化方向是相反的,即使欧氏距离为0,也直接予以排除。
  • 2.6用方型滤波器取代SIFT中的高斯滤波器,利用积分图(计算位于滤波器方型的四个角落值)大幅提高运算速度。
2. 3 第三种:通过graph cut寻找拼接缝

计算机竞赛 - 基于机器视觉的图像拼接算法,python,java

上图中,我们把两个Patch拼合到一起,它们首先被放置为有一定重合区域。为了让两者之间的缝隙尽可能的不明显,我们需要知道一个分割线(cut),在这个分割线的左边,图像像素由A贡献,相反在其右边,图像像素则由B贡献。
这里我们将输出的图像看做是由”图(Graph)“所表示,并且给这个Graph两个端点,一个是A,一个是B:

计算机竞赛 - 基于机器视觉的图像拼接算法,python,java

上图中,标有数字的节点实际上是重合区域的像素,节点之间的连接都是有代价的。我们需要拿起剪刀从某个连接上剪掉某些连接,并且要使得被剪掉的连接的代价之和最小化,这就是最典型的图算法中的最小割问题(min
cut),它也对应着所谓的最大流问题(max flow)。
那么,如何定义连接之间的代价呢?这里假设在重合区域两个相邻的输出像素分别是s和t。我们知道输出的像素既可能来自于A,也可能来自于B,于是我们用A(s),B(s)来表示s点在A图和B图的颜色,
用A(t),B(t)来表示t点在A图和B图的颜色。
于是,s点和t点的连接的代价被定义为:
计算机竞赛 - 基于机器视觉的图像拼接算法,python,java
我们要做的就是寻找一个切割缝,最小化M ( s , t , A , B )
M(s,t,A,B)M(s,t,A,B)当找到这条缝之后,左边的像素从A中拷贝而来,而右边的像素则从B中拷贝而来即可。
接下来就可以不断的拼合更多的Patch,目标是用越来越多次的覆盖输出图片中的缝隙,使得图像重合部分越来越多,直到代价值收敛。

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

到了这里,关于计算机竞赛 - 基于机器视觉的图像拼接算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于机器视觉的车道线检测 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的视频多目标跟踪实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 理解车道检测的概念 那么什么是车道检测?以下是百度百科对车道的定义:

    2024年02月08日
    浏览(55)
  • 计算机竞赛 基于机器视觉的行人口罩佩戴检测

    简介 2020新冠爆发以来,疫情牵动着全国人民的心,一线医护工作者在最前线抗击疫情的同时,我们也可以看到很多科技行业和人工智能领域的从业者,也在贡献着他们的力量。近些天来,旷视、商汤、海康、百度都多家科技公司研发出了带有AI人脸检测算法的红外测温、口罩

    2024年02月10日
    浏览(52)
  • 计算机竞赛 基于机器视觉的停车位识别检测

    简介 你是不是经常在停车场周围转来转去寻找停车位。如果你的车辆能准确地告诉你最近的停车位在哪里,那是不是很爽?事实证明,基于深度学习和OpenCV解决这个问题相对容易,只需获取停车场的实时视频即可。 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

    2024年02月11日
    浏览(61)
  • 计算机竞赛 基于机器视觉的手势检测和识别算法

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的手势检测与识别算法 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 废话不多说,先看看学长实现的效果吧 主流的手势分割方法主要分为静态手

    2024年02月11日
    浏览(56)
  • 计算机竞赛 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

    🔥 优质竞赛项目系列,今天要分享的是 基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 物体检测就是对数字图像中一类特定的物体的

    2024年02月11日
    浏览(64)
  • 计算机视觉----图像拼接

     一.简介 图像拼接(Image Stitching)是一种利用实景图像组成全景空间的技术,它将多幅图像拼接成一幅大尺度图像或360度全景图,接可以看做是场景重建的一种特殊情况,其中图像仅通过平面单应性进行关联。图像拼接在运动检测和跟踪,增强现实,分辨率增强,视频压缩和图

    2024年02月09日
    浏览(52)
  • 计算机视觉--图像拼接

    单应性变换是指一个平面上的点通过一个矩阵变换映射到另一个平面上的点,这个变换矩阵是一个 3 × 3 3 times 3 3 × 3 的矩阵,称为单应性矩阵。单应性变换可以分为仿射变换和投影变换两种类型。 在单应性变换中,仿射变换是其中一种特殊的变换。仿射变换是指在变换前后

    2024年02月04日
    浏览(52)
  • 计算机视觉(三)图像拼接

    1.1 流程 要拼接多张图像,就一定要找到他们之间的映射关系,流程如下: 得到映射关系,就能进行拼接: 简而言之,拼接两张图像,就是找到他们的特征点,根据这些特征点: 1.2 映射与处理 找到两张图像的像素点对应关系,然后把第二张图像映射到在第一张图像的坐标系

    2024年02月05日
    浏览(91)
  • 计算机视觉基础学习-图像拼接

    首先本文介绍的图像拼接并非对尺寸相同的图片进行简单拼接,而是基于全景图的拼接 普通相机拍摄图像时,无法兼顾相机视场与视场中单个物体的分辨率问题,而全景相机普遍价格昂贵, 不适用于低成本的一般性场景。为了使用普通相机获取宽视角,甚至是 360°全景图像

    2023年04月10日
    浏览(52)
  • Python计算机视觉(三)—图像拼接

        图像拼接是计算机视觉中的重要分支,它是将两幅以上的具有部分重叠的图像进行拼接从而得到较高分辨率或宽视角的图像。本文将结合python+opencv实现两幅图像的拼接。     图像拼接一般步骤: 1.根据给定图像/集,实现特征匹配 2.通过匹配特征计算图像之间的变换结构

    2024年02月15日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包