摘要
人工智能术语翻译第五部分,包括Q、R、S、T开头的词汇!
文章来源地址https://www.toymoban.com/news/detail-644166.html
Q
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|---|---|---|
Q Function | Q函数 | ||
Q-Learning | Q学习 | ||
Q-Network | Q网络 | ||
Quadratic Loss Function | 平方损失函数 | ||
Quadratic Programming | 二次规划 | ||
Quadrature Pair | 象限对 | ||
Quantized Neural Network | 量子化神经网络 | QNN | |
Quantum Computer | 量子计算机 | ||
Quantum Computing | 量子计算 | ||
Quantum Machine Learning | 量子机器学习 | ||
Quantum Mechanics | 量子力学 | 物理 | |
Quasi Newton Method | 拟牛顿法 | ||
Quasi-Concave | 拟凹 | ||
Query | 查询 | ||
Query Vector | 查询向量 | ||
Query-Key-Value | 查询-键-值 | QKV | |
Quantum Chemistry | 量子化学 | 化学 | |
Quantum Theory | 量子理论 | 物理 |
R
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|---|---|---|
Radial Basis Function | 径向基函数 | RBF | |
Random Access Memory | 随机访问存储 | RAM | |
Random Field | 随机场 | ||
Random Forest Algorithm | 随机森林算法 | ||
Random Forest | 随机森林 | RF、RFS | 统计 |
Random Initialization | 随机初始化 | ||
Random Sampling | 随机采样 | 统计 | |
Random Search | 随机搜索 | ||
Random Subspace | 随机子空间 | ||
Random Variable | 随机变量 | ||
Random Walk | 随机游走 | ||
Range | 值域 | ||
Rank | 秩 | ||
Ratio Matching | 比率匹配 | ||
Raw Feature | 原始特征 | ||
Re-Balance | 再平衡 | ||
Re-Sampling | 重采样 | ||
Re-Weighting | 重赋权 | ||
Readout Function | 读出函数 | ||
Real-Time Recurrent Learning | 实时循环学习 | RTRL | |
Recall | 查全率/召回率 | ||
Recall-Oriented Understudy For Gisting Evaluation | ROUGE | ||
Receiver Operating Characteristic | 受试者工作特征 | ROC | |
Receptive Field | 感受野 | ||
Recirculation | 再循环 | ||
Recognition Weight | 认知权重 | ||
Recommender System | 推荐系统 | ||
Reconstruction | 重构 | ||
Reconstruction Error | 重构误差 | ||
Rectangular Diagonal Matrix | 矩形对角矩阵 | ||
Rectified Linear | 整流线性 | ||
Rectified Linear Transformation | 整流线性变换 | ||
Rectified Linear Unit | 修正线性单元/整流线性单元 | ReLU | CHAPTER 2 |
Rectifier Network | 整流网络 | ||
Recurrence | 循环 | ||
Recurrent Convolutional Network | 循环卷积网络 | ||
Recurrent Multi-Layer Perceptron | 循环多层感知器 | RMLP | |
Recurrent Network | 循环网络 | ||
Recurrent Neural Network | 循环神经网络 | RNN | 机器学习 |
Recursive Neural Network | 递归神经网络 | RecNN | |
Reducible | 可约的 | ||
Redundant Feature | 冗余特征 | ||
Reference Model | 参考模型 | ||
Region | 区域 | ||
Regression | 回归 | 统计 | |
Regularization | 正则化 | ||
Regularizer | 正则化项 | ||
Reinforcement Learning | 强化学习 | RL | 机器学习 |
Rejection Sampling | 拒绝采样 | ||
Relation | 关系 | ||
Relational Database | 关系型数据库 | ||
Relative Entropy | 相对熵 | ||
Relevant Feature | 相关特征 | ||
Reparameterization | 再参数化/重参数化 | ||
Reparametrization Trick | 重参数化技巧 | ||
Replay Buffer | 经验池 | ||
Representation | 表示 | ||
Representation Learning | 表示学习 | ||
Representational Capacity | 表示容量 | ||
Representer Theorem | 表示定理 | ||
Reproducing Kernel Hilbert Space | 再生核希尔伯特空间 | RKHS | |
Rescaling | 再缩放 | ||
Reservoir Computing | 储层计算 | ||
Reset Gate | 重置门 | ||
Residual Blocks | 残差块 | ||
Residual Connection | 残差连接 | ||
Residual Mapping | 残差映射 | ||
Residual Network | 残差网络 | ResNet | |
Residual Unit | 残差单元 | ||
Residue Function | 残差函数 | ||
Resolution Quotient | 归结商 | ||
Restricted Boltzmann Machine | 受限玻尔兹曼机 | RBM | |
Restricted Isometry Property | 限定等距性 | RIP | |
Return | 总回报 | ||
Reverse Correlation | 反向相关 | ||
Reverse KL Divergence | 逆向KL散度 | ||
Reverse Mode Accumulation | 反向模式累加 | ||
Reversible Markov Chain | 可逆马尔可夫链 | ||
Reward | 奖励 | ||
Reward Function | 奖励函数 | ||
Ridge Regression | 岭回归 | ||
Riemann Integral | 黎曼积分 | ||
Right Eigenvector | 右特征向量 | ||
Right Singular Vector | 右奇异向量 | ||
Risk | 风险 | ||
Risk Function | 风险函数 | ||
Robustness | 稳健性 | 计算机、机器学习 | |
Root Node | 根结点 | ||
Round-Off Error | 舍入误差 | ||
Row | 行 | ||
Rule Engine | 规则引擎 | ||
Rule Learning | 规则学习 | ||
Random Selection | 随机选择 | 统计 | |
Raw Datasets | 原始数据集 | 机器学习 | |
Root Mean Square Errors | 均方根 | RMSE | 统计 |
S
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|---|---|---|
S-Fold Cross Validation | S 折交叉验证 | ||
Saccade | 扫视 | ||
Saddle Point | 鞍点 | ||
Saddle-Free Newton Method | 无鞍牛顿法 | ||
Saliency Map | 显著图 | ||
Saliency-Based Attention | 基于显著性的注意力 | ||
Same | 相同 | ||
Sample | 样本 | ||
Sample Complexity | 样本复杂度 | ||
Sample Mean | 样本均值 | ||
Sample Space | 样本空间 | ||
Sample Variance | 样本方差 | ||
Sampling | 采样 | ||
Sampling Method | 采样法 | ||
Saturate | 饱和 | ||
Saturating Function | 饱和函数 | ||
Scalar | 标量 | ||
Scale Invariance | 尺度不变性 | ||
Scatter Matrix | 散布矩阵 | ||
Scheduled Sampling | 计划采样 | ||
Score | 得分 | ||
Score Function | 评分函数 | ||
Score Matching | 分数匹配 | ||
Second Derivative | 二阶导数 | ||
Second Derivative Test | 二阶导数测试 | ||
Second Layer | 第二层 | ||
Second-Order Method | 二阶方法 | ||
Selective Attention | 选择性注意力 | ||
Selective Ensemble | 选择性集成 | ||
Self Information | 自信息 | ||
Self-Attention | 自注意力 | ||
Self-Attention Model | 自注意力模型 | ||
Self-Contrastive Estimation | 自对比估计 | ||
Self-Driving | 自动驾驶 | ||
Self-Gated | 自门控 | ||
Self-Organizing Map | 自组织映射网 | SOM | |
Self-Taught Learning | 自学习 | ||
Self-Training | 自训练 | ||
Semantic Gap | 语义鸿沟 | ||
Semantic Hashing | 语义哈希 | ||
Semantic Segmentation | 语义分割 | ||
Semantic Similarity | 语义相似度 | ||
Semi-Definite Programming | 半正定规划 | ||
Semi-Naive Bayes Classifiers | 半朴素贝叶斯分类器 | ||
Semi-Restricted Boltzmann Machine | 半受限玻尔兹曼机 | ||
Semi-Supervised | 半监督 | ||
Semi-Supervised Clustering | 半监督聚类 | ||
Semi-Supervised Learning | 半监督学习 | ||
Semi-Supervised Support Vector Machine | 半监督支持向量机 | S3VM | |
Sentiment Analysis | 情感分析 | ||
Separable | 可分离的 | ||
Separate | 分离的 | ||
Separating Hyperplane | 分离超平面 | ||
Separation | 分离 | ||
Sequence Labeling | 序列标注 | ||
Sequence To Sequence Learning | 序列到序列学习 | Seq2Seq | |
Sequence-To-Sequence | 序列到序列 | Seq2Seq | |
Sequential Covering | 序贯覆盖 | ||
Sequential Minimal Optimization | 序列最小最优化 | SMO | |
Sequential Model-Based Optimization | 时序模型优化 | SMBO | |
Sequential Partitioning | 顺序分区 | ||
Setting | 情景 | ||
Shadow Circuit | 浅度回路 | ||
Shallow Learning | 浅层学习 | ||
Shannon Entropy | 香农熵 | ||
Shannons | 香农 | ||
Shaping | 塑造 | ||
Sharp Minima | 尖锐最小值 | ||
Shattering | 打散 | ||
Shift Invariance | 平移不变性 | ||
Short-Term Memory | 短期记忆 | ||
Shortcut Connection | 直连边 | ||
Shortlist | 短列表 | ||
Siamese Network | 孪生网络 | ||
Sigmoid | Sigmoid(一种激活函数) | 统计 | |
Sigmoid Belief Network | Sigmoid信念网络 | SBN | |
Sigmoid Curve | S 形曲线 | ||
Sigmoid Function | Sigmoid函数 | ||
Sign Function | 符号函数 | ||
Signed Distance | 带符号距离 | ||
Similarity | 相似度 | ||
Similarity Measure | 相似度度量 | ||
Simple Cell | 简单细胞 | ||
Simple Recurrent Network | 简单循环网络 | SRN | |
Simple Recurrent Neural Network | 简单循环神经网络 | S-RNN | |
Simplex | 单纯形 | ||
Simulated Annealing | 模拟退火 | 统计、机器学习 | |
Simultaneous Localization And Mapping | 即时定位与地图构建 | SLAM | |
Single Component Metropolis-Hastings | 单分量Metropolis-Hastings | ||
Single Linkage | 单连接 | ||
Singular | 奇异的 | ||
Singular Value | 奇异值 | ||
Singular Value Decomposition | 奇异值分解 | SVD | |
Singular Vector | 奇异向量 | ||
Size | 大小 | ||
Skip Connection | 跳跃连接 | ||
Skip-Gram Model | 跳元模型 | ||
Skip-Gram Model With Negative Sampling | 跳元模型加负采样 | ||
Slack Variable | 松弛变量 | ||
Slow Feature Analysis | 慢特征分析 | ||
Slowness Principle | 慢性原则 | ||
Smoothing | 平滑 | ||
Smoothness Prior | 平滑先验 | ||
Soft Attention Mechanism | 软性注意力机制 | ||
Soft Clustering | 软聚类 | ||
Soft Margin | 软间隔 | ||
Soft Margin Maximization | 软间隔最大化 | ||
Soft Target | 软目标 | ||
Soft Voting | 软投票 | ||
Softmax | Softmax/软最大化 | ||
Softmax Function | Softmax函数/软最大化函数 | 统计、机器学习 | |
Softmax Regression | Softmax回归/软最大化回归 | ||
Softmax Unit | Softmax单元/软最大化单元 | ||
Softplus | Softplus | ||
Softplus Function | Softplus函数 | ||
Source Domain | 源领域 | ||
Span | 张成子空间 | ||
Sparse | 稀疏 | ||
Sparse Activation | 稀疏激活 | ||
Sparse Auto-Encoder | 稀疏自编码器 | ||
Sparse Coding | 稀疏编码 | ||
Sparse Connectivity | 稀疏连接 | ||
Sparse Initialization | 稀疏初始化 | ||
Sparse Interactions | 稀疏交互 | ||
Sparse Representation | 稀疏表示 | ||
Sparse Weights | 稀疏权重 | ||
Sparsity | 稀疏性 | ||
Specialization | 特化 | ||
Spectral Clustering | 谱聚类 | ||
Spectral Radius | 谱半径 | ||
Speech Recognition | 语音识别 | ||
Sphering | Sphering | ||
Spike And Slab | 尖峰和平板 | ||
Spike And Slab RBM | 尖峰和平板RBM | ||
Spiking Neural Nets | 脉冲神经网络 | ||
Splitting Point | 切分点 | ||
Splitting Variable | 切分变量 | ||
Spurious Modes | 虚假模态 | ||
Square | 方阵 | ||
Square Loss | 平方损失 | ||
Squared Euclidean Distance | 欧氏距离平方 | ||
Squared Exponential | 平方指数 | ||
Squashing Function | 挤压函数 | ||
Stability | 稳定性 | ||
Stability-Plasticity Dilemma | 可塑性-稳定性窘境 | ||
Stable Base Learner | 稳定基学习器 | ||
Stacked Auto-Encoder | 堆叠自编码器 | SAE | |
Stacked Deconvolutional Network | 堆叠解卷积网络 | SDN | |
Stacked Recurrent Neural Network | 堆叠循环神经网络 | SRNN | |
Standard Basis | 标准基 | ||
Standard Deviation | 标准差 | ||
Standard Error | 标准差 | ||
Standard Normal Distribution | 标准正态分布 | ||
Standardization | 标准化 | ||
State | 状态 | ||
State Action Reward State Action | SARSA算法 | SARSA | |
State Sequence | 状态序列 | ||
State Space | 状态空间 | ||
State Value Function | 状态值函数 | ||
State-Action Value Function | 状态-动作值函数 | ||
Statement | 声明 | ||
Static Computational Graph | 静态计算图 | ||
Static Game | 静态博弈 | ||
Stationary | 平稳的 | ||
Stationary Distribution | 平稳分布 | ||
Stationary Point | 驻点 | ||
Statistic Efficiency | 统计效率 | ||
Statistical Learning | 统计学习 | ||
Statistical Learning Theory | 统计学习理论 | ||
Statistical Machine Learning | 统计机器学习 | ||
Statistical Relational Learning | 统计关系学习 | ||
Statistical Simulation Method | 统计模拟方法 | ||
Statistics | 统计量 | ||
Status Feature Function | 状态特征函数 | ||
Steepest Descent | 最速下降法 | ||
Step Decay | 阶梯衰减 | ||
Stochastic | 随机 | ||
Stochastic Curriculum | 随机课程 | ||
Stochastic Dynamical System | 随机动力系统 | ||
Stochastic Gradient Ascent | 随机梯度上升 | ||
Stochastic Gradient Descent | 随机梯度下降 | ||
Stochastic Gradient Descent With Warm Restarts | 带热重启的随机梯度下降 | SGDR | |
Stochastic Matrix | 随机矩阵 | ||
Stochastic Maximum Likelihood | 随机最大似然 | ||
Stochastic Neighbor Embedding | 随机近邻嵌入 | ||
Stochastic Neural Network | 随机神经网络 | SNN | |
Stochastic Policy | 随机性策略 | ||
Stochastic Process | 随机过程 | ||
Stop Words | 停用词 | ||
Stratified Sampling | 分层采样 | ||
Stream | 流 | ||
Stride | 步幅 | ||
String Kernel Function | 字符串核函数 | ||
Strong Classifier | 强分类器 | ||
Strong Duality | 强对偶性 | ||
Strongly Connected Graph | 强连通图 | ||
Strongly Learnable | 强可学习 | ||
Structural Risk | 结构风险 | ||
Structural Risk Minimization | 结构风险最小化 | SRM | |
Structure Learning | 结构学习 | ||
Structured Learning | 结构化学习 | ||
Structured Probabilistic Model | 结构化概率模型 | ||
Structured Variational Inference | 结构化变分推断 | ||
Student Network | 学生网络 | ||
Sub-Optimal | 次最优 | ||
Subatomic | 亚原子 | ||
Subsample | 子采样 | ||
Subsampling | 下采样 | ||
Subsampling Layer | 子采样层 | ||
Subset Evaluation | 子集评价 | ||
Subset Search | 子集搜索 | ||
Subspace | 子空间 | ||
Substitution | 置换 | ||
Successive Halving | 逐次减半 | ||
Sum Rule | 求和法则 | ||
Sum-Product | 和积 | ||
Sum-Product Network | 和-积网络 | ||
Super-Parent | 超父 | ||
Supervised | 监督 | ||
Supervised Learning | 监督学习 | 机器学习 | |
Supervised Learning Algorithm | 监督学习算法 | ||
Supervised Model | 监督模型 | ||
Supervised Pretraining | 监督预训练 | ||
Support Vector | 支持向量 | 统计、机器学习 | |
Support Vector Expansion | 支持向量展式 | ||
Support Vector Machine | 支持向量机 | SVM | 统计、机器学习 |
Support Vector Regression | 支持向量回归 | SVR | 统计、机器学习 |
Surrogat Loss | 替代损失 | ||
Surrogate Function | 替代函数 | ||
Surrogate Loss Function | 代理损失函数 | ||
Symbol | 符号 | ||
Symbolic Differentiation | 符号微分 | ||
Symbolic Learning | 符号学习 | ||
Symbolic Representation | 符号表示 | ||
Symbolism | 符号主义 | ||
Symmetric | 对称 | ||
Symmetric Matrix | 对称矩阵 | ||
Synonymy | 多词一义性 | ||
Synset | 同义词集 | ||
Synthetic Feature | 合成特征 | ||
Scaling | 缩放 | 图像处理 | |
Simulation | 仿真 | ||
Sequence-Function | 序列-功能 | ||
Set Prediction | 集合预测 | ||
stuff categories | 填充类别 | 全景分割中,天空、墙面、地面等不规则的类别 |
T
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|---|---|---|
T-Distribution Stochastic Neighbour Embedding | T分布随机近邻嵌入 | T-SNE | |
Tabular Value Function | 表格值函数 | ||
Tagging | 标注 | ||
Tangent Distance | 切面距离 | ||
Tangent Plane | 切平面 | ||
Tangent Propagation | 正切传播 | ||
Target | 目标 | ||
Target Domain | 目标领域 | ||
Taylor | 泰勒 | ||
Taylor’s Formula | 泰勒公式 | ||
Teacher Forcing | 强制教学 | ||
Teacher Network | 教师网络 | ||
Temperature | 温度 | ||
Tempered Transition | 回火转移 | ||
Tempering | 回火 | ||
Temporal-Difference Learning | 时序差分学习 | ||
Tensor | 张量 | ||
Tensor Processing Units | 张量处理单元 | TPU | |
Term Frequency-Inverse Document Frequency | 单词频率-逆文本频率 | TF-IDF | |
Terminal State | 终止状态 | ||
Test Data | 测试数据 | ||
Test Error | 测试误差 | ||
Test Sample | 测试样本 | ||
Test Set | 测试集 | 机器学习 | |
The Collider Case | 碰撞情况 | ||
Threshold | 阈值 | 数学 | |
Threshold Logic Unit | 阈值逻辑单元 | ||
Threshold-Moving | 阈值移动 | ||
Tied Weight | 捆绑权重 | ||
Tikhonov Regularization | Tikhonov正则化 | ||
Tiled Convolution | 平铺卷积 | ||
Time Delay Neural Network | 时延神经网络 | TDNN | |
Time Homogenous Markov Chain | 时间齐次马尔可夫链 | ||
Time Step | 时间步 | ||
Toeplitz Matrix | Toeplitz矩阵 | ||
Token | 词元 | ||
Tokenize | 词元化 | ||
Tokenization | 词元化 | ||
Tokenizer | 词元分析器 | ||
Tolerance | 容差 | ||
Top-Down | 自顶向下 | ||
Topic | 话题 | ||
Topic Model | 话题模型 | ||
Topic Modeling | 话题分析 | ||
Topic Vector Space | 话题向量空间 | ||
Topic Vector Space Model | 话题向量空间模型 | ||
Topic-Document Matrix | 话题-文本矩阵 | ||
Topographic ICA | 地质ICA | ||
Total Cost | 总体代价 | ||
Trace | 迹 | ||
Tractable | 易处理的 | ||
Training | 训练 | ||
Training Data | 训练数据 | ||
Training Error | 训练误差 | ||
Training Instance | 训练实例 | ||
Training Sample | 训练样本 | 机器学习 | |
Training Set | 训练集 | 机器学习 | |
Trajectory | 轨迹 | ||
Transcribe | 转录 | ||
Transcription System | 转录系统 | ||
Transductive Learning | 直推学习 | ||
Transductive Transfer Learning | 直推迁移学习 | ||
Transfer Learning | 迁移学习 | ||
Transform | 变换 | ||
Transformer | Transformer | ||
Transformer Model | Transformer模型 | ||
Transition | 转移 | ||
Transition Kernel | 转移核 | ||
Transition Matrix | 状态转移矩阵 | ||
Transition Probability | 转移概率 | ||
Transpose | 转置 | ||
Transposed Convolution | 转置卷积 | ||
Tree-Structured LSTM | 树结构的长短期记忆模型 | ||
Treebank | 树库 | ||
Trial | 试验 | ||
Trial And Error | 试错 | ||
Triangle Inequality | 三角不等式 | ||
Triangular Cyclic Learning Rate | 三角循环学习率 | ||
Triangulate | 三角形化 | ||
Triangulated Graph | 三角形化图 | ||
Trigram | 三元语法 | ||
True Negative | 真负例 | TN | 统计 |
True Positive | 真正例 | TP | 统计 |
True Positive Rate | 真正例率 | TPR | 统计 |
Truncated Singular Value Decomposition | 截断奇异值分解 | ||
Truncation Error | 截断误差 | ||
Turing Completeness | 图灵完备 | ||
Turing Machine | 图灵机 | ||
Twice-Learning | 二次学习 | ||
Two-Dimensional Array | 二维数组 | ||
The Global Minimum | 全局最小值 | 机器学习 | |
Turing Test | 图灵测试 | AI,CS |
文章来源:https://www.toymoban.com/news/detail-644166.html
到了这里,关于人工智能术语翻译(五)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!