Grafana Prometheus 通过JMX监控kafka 【2023最新方式】

这篇具有很好参考价值的文章主要介绍了Grafana Prometheus 通过JMX监控kafka 【2023最新方式】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

第三方kafka exporter方案

目前网上关于使用Prometheus 监控kafka的大部分资料都是使用一个第三方的
kafka exporter,他的原理大概就是启动一个kafka客户端,获取kafka服务器的信息,然后提供一些metric接口供Prometheus使用,随意它能展示的监控信息比较有限,只有每个主题的分区数,每秒/分钟消息数,消费组的lag数。但是kafka本身的JMX有提供500+的监控信息可以进行监控,当然不是说这这么监控指标都很重要,相比kafka exporter直接使用JMX可监控的选项会更多。
Grafana Prometheus 通过JMX监控kafka 【2023最新方式】,grafana,prometheus,kafka

Prometheus官方方案

Prometheus官方提供的jmx_exporter可以将JMX转换为Prometheus Metrics格式。

Prometheus JMX exporter使用方式选择

jmx_exporter提供两种用法:

  • 一种是启动独立的进程。JVM 启动时指定参数,暴露 JMX 的 RMI 接口,JMX_Exporter 调用 RMI 获取 JVM 运行时状态数据,转换为 Prometheus metrics 格式,并暴露端口让 Prometheus 采集。
  • 一种是JVM进程内启动,通过java agent的形式运行,进程内读取 JVM 运行时状态数据,转换为 Prometheus metrics 格式,并暴露端口让 Prometheus 采集。官方比较推荐使用这种方式。

使用JMX exporter监控kafka

在kafka-server-start.sh最上面添加下面的代码:

export KAFKA_OPTS="-javaagent:/opt/kafka_2.11-1.1.0/bin/jmx_prometheus_javaagent-0.19.0.jar=9990:/opt/kafka_2.11-1.1.0/bin/kafka-jmx.yml"

jmx_exporter官网下载最新的jmx_prometheus_javaagent-0.19.0.jar包。

kafka-jmx.yml

lowercaseOutputName: true

rules:
# Special cases and very specific rules
- pattern : kafka.server<type=(.+), name=(.+), clientId=(.+), topic=(.+), partition=(.*)><>Value
  name: kafka_server_$1_$2
  type: GAUGE
  labels:
    clientId: "$3"
    topic: "$4"
    partition: "$5"
- pattern : kafka.server<type=(.+), name=(.+), clientId=(.+), brokerHost=(.+), brokerPort=(.+)><>Value
  name: kafka_server_$1_$2
  type: GAUGE
  labels:
    clientId: "$3"
    broker: "$4:$5"
- pattern : kafka.coordinator.(\w+)<type=(.+), name=(.+)><>Value
  name: kafka_coordinator_$1_$2_$3
  type: GAUGE

# Generic per-second counters with 0-2 key/value pairs
- pattern: kafka.(\w+)<type=(.+), name=(.+)PerSec\w*, (.+)=(.+), (.+)=(.+)><>Count
  name: kafka_$1_$2_$3_total
  type: COUNTER
  labels:
    "$4": "$5"
    "$6": "$7"
- pattern: kafka.(\w+)<type=(.+), name=(.+)PerSec\w*, (.+)=(.+)><>Count
  name: kafka_$1_$2_$3_total
  type: COUNTER
  labels:
    "$4": "$5"
- pattern: kafka.(\w+)<type=(.+), name=(.+)PerSec\w*><>Count
  name: kafka_$1_$2_$3_total
  type: COUNTER

- pattern: kafka.server<type=(.+), client-id=(.+)><>([a-z-]+)
  name: kafka_server_quota_$3
  type: GAUGE
  labels:
    resource: "$1"
    clientId: "$2"

- pattern: kafka.server<type=(.+), user=(.+), client-id=(.+)><>([a-z-]+)
  name: kafka_server_quota_$4
  type: GAUGE
  labels:
    resource: "$1"
    user: "$2"
    clientId: "$3"

# Generic gauges with 0-2 key/value pairs
- pattern: kafka.(\w+)<type=(.+), name=(.+), (.+)=(.+), (.+)=(.+)><>Value
  name: kafka_$1_$2_$3
  type: GAUGE
  labels:
    "$4": "$5"
    "$6": "$7"
- pattern: kafka.(\w+)<type=(.+), name=(.+), (.+)=(.+)><>Value
  name: kafka_$1_$2_$3
  type: GAUGE
  labels:
    "$4": "$5"
- pattern: kafka.(\w+)<type=(.+), name=(.+)><>Value
  name: kafka_$1_$2_$3
  type: GAUGE

# Emulate Prometheus 'Summary' metrics for the exported 'Histogram's.
#
# Note that these are missing the '_sum' metric!
- pattern: kafka.(\w+)<type=(.+), name=(.+), (.+)=(.+), (.+)=(.+)><>Count
  name: kafka_$1_$2_$3_count
  type: COUNTER
  labels:
    "$4": "$5"
    "$6": "$7"
- pattern: kafka.(\w+)<type=(.+), name=(.+), (.+)=(.*), (.+)=(.+)><>(\d+)thPercentile
  name: kafka_$1_$2_$3
  type: GAUGE
  labels:
    "$4": "$5"
    "$6": "$7"
    quantile: "0.$8"
- pattern: kafka.(\w+)<type=(.+), name=(.+), (.+)=(.+)><>Count
  name: kafka_$1_$2_$3_count
  type: COUNTER
  labels:
    "$4": "$5"
- pattern: kafka.(\w+)<type=(.+), name=(.+), (.+)=(.*)><>(\d+)thPercentile
  name: kafka_$1_$2_$3
  type: GAUGE
  labels:
    "$4": "$5"
    quantile: "0.$6"
- pattern: kafka.(\w+)<type=(.+), name=(.+)><>Count
  name: kafka_$1_$2_$3_count
  type: COUNTER
- pattern: kafka.(\w+)<type=(.+), name=(.+)><>(\d+)thPercentile
  name: kafka_$1_$2_$3
  type: GAUGE
  labels:
    quantile: "0.$4"	

配置好kafka-server-start.sh后还需要重启kafka。

Prometheus配置

在Prometheus的prometheus.yml添加如下内容。注意端口号为KAFKA_OPTS配置的端口。

- job_name: "kafka_jmx"
    metrics_path: /metrics
    static_configs:
      - targets: ['192.168.249.1:9990','192.168.249.2:9990','192.168.249.3:9990']

配置完成后重新加载Prometheus配置文件就可以了。

grafana 配置

通过上面配置后,可以在grafan中找到对应的面板直接来用。

https://grafana.com/grafana/dashboards/18276-kafka-dashboard/

效果

Grafana Prometheus 通过JMX监控kafka 【2023最新方式】,grafana,prometheus,kafka文章来源地址https://www.toymoban.com/news/detail-645608.html

到了这里,关于Grafana Prometheus 通过JMX监控kafka 【2023最新方式】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Prometheus监控Kafka(三种方法JMX/Kafka_exporter/KMINION监控Kafka)

    一句话说明需求: 公司需要监控kafka消息队列的消费情况,强调需查看当前Topic中的message的数量。 一句话说明解决: 像Kafka这样的Java进程可以先通过JMX Agent或者第三方Agent(kafka_exporterKMINION等)获取监控数据,再通过Prometheus采集数据、通过Grafana模板展示数据即可。另外具体

    2024年02月04日
    浏览(37)
  • Prometheus监控Kafka(三种方法JMX Kafka_exporter KMINION监控Kafka)_kafka exporter

    公司需要监控kafka消息队列的消费情况,强调需查看当前Topic中的message的数量。 一句话说明解决: 像Kafka这样的Java进程可以先通过JMX Agent或者第三方Agent(kafka_exporterKMINION等)获取监控数据,再通过Prometheus采集数据、通过Grafana模板展示数据即可。另外具体的message数量需要通

    2024年04月25日
    浏览(44)
  • 基于kafka_exporter&prometheus&grafana的kafka监控实现

    下载kafka_exporter 启动kafka_exporter Error Init Kafka Client: kafka: client has run out of available brokers to talk to (Is your cluster reachable?) 报错原因:kafka_exporter版本太低 !!! 防火墙开放端口(未启动防火墙不需要) kafka_exporter启动脚本 其中,kafka监控账号:user/pwd【md5(pwd)】 监听端口号:–

    2024年01月21日
    浏览(38)
  • SpringBoot+Prometheus+Grafana 监控面板(项目配置方式【入侵】)

    提示:本文使用SpringBoot 简单样例,介绍基础配置和使用方法 包含内容:Docker、SpringBoot、Maven、 Prometheus、Grafana等 提示:本文包含官网内容介绍,具体更项目的学习,请参照各官网文档,谢谢 官网:https://prometheus.io/ 文档地址:https://prometheus.io/docs/introduction/overview/ 使用领先

    2024年02月16日
    浏览(50)
  • 超详细教程:Centos安装Prometheus、Grafana监控Kafka及Linux主机

    下载 node_exporter 解压到指定 /app/exporter 编写管理脚本 control_node_exporter.sh ,并给予权限  chmod + x control_node_exporter.sh ,脚本内容如下: 执行命令:   查看同级目录下的 node_exporter.log 日志 浏览器访问  host:9100 ,是否看到下面的页面 出现如上的界面,表示此部分的部署成功。

    2024年02月04日
    浏览(49)
  • 【Linux】部署Prometheus + Grafana简介、监控及设置告警详细操作(多种方式安装,亲测无问题)

    🍁 博主简介   🏅云计算领域优质创作者   🏅华为云开发者社区专家博主   🏅阿里云开发者社区专家博主 💊 交流社区: 运维交流社区 欢迎大家的加入! 服务器类型 IP地址 组件 Prometheus 服务器、agent 服务器、grafana 服务器 172.16.11.209 Prometheus、node_exporter、Grafana

    2024年02月13日
    浏览(46)
  • Prometheus服务器、Prometheus被监控端、Grafana、Prometheus服务器、Prometheus被监控端、Grafana

    day03Prometheus概述部署Prometheus服务器环境说明:配置时间安装Prometheus服务器添加被监控端部署通用的监控exporterGrafana概述部署Grafana展示node1的监控信息监控MySQL数据库配置MySQL配置mysql exporter配置mysql exporter配置prometheus监控mysql自动发现机制概述基于文件自动发现修改Prometheus使

    2024年02月14日
    浏览(46)
  • 【Java万花筒】Java 应用程序监控与管理综述:从JMX到Prometheus的全面指南

    在现代软件开发中,运维与监控是确保应用程序稳定性和性能的关键环节。Java作为一种广泛应用的编程语言,拥有丰富的运维与监控库,为开发者提供了强大的工具来管理和优化应用程序。本文将深入探讨 Java 中常用的运维与监控库,包括 JMX、Metrics、Spring Boot Admin、AppDyna

    2024年02月19日
    浏览(83)
  • zabbix通过JMX监控tomcat

            在server.zabbix.com中我们在编译时已经添加--enabled-java选项并布置好了java环境所以不再做过多描述 tomcat源码包提取链接: https://pan.baidu.com/s/11ectXLVaSzmQs4tuspZKSw?pwd=2hye  提取码: 2hye     模板提取链接: https://pan.baidu.com/s/1KQeNlQAphVp7RQNhOSQT5Q?pwd=l3yp  提取码: l3yp    

    2024年02月15日
    浏览(40)
  • 使用Prometheus+Grafana实现监控

    我们用 actuator 暴露应用本身的线程、bean 等信息,但是这些信息还是独立于 Prometheus 之外的。下面我们 将介绍如何将 SpringBoot Actuator 与 Prometheus 结合起来。 我们同样从 Spring Initializr 创建一个名为 spring-web-prometheus-demo 的项目,选取的依赖包括: Spring Web Spring Boot Actuator Prome

    2024年02月12日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包