第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解

这篇具有很好参考价值的文章主要介绍了第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


玩转线性代数(19)初等矩阵与初等变换的相关应用的笔记,例见原文

一个基本的方法

已知: A r ∼ F A^r \sim F ArF,求可逆阵 P P P,使 P A = F PA = F PA=F ( F F F A A A的行最简形)
方法:利用初等行变换,将矩阵A左边所乘初等矩阵相乘,从而得到可逆矩阵P.
步骤:
(1)对矩阵A进行l次初等行变换至行最简形:
A r ∼ F A^r \sim F ArF,即 P l . . . P 2 P 1 A r = F P_l...P_2P_1A^r = F Pl...P2P1Ar=F
(2)求 P = P l . . . P 2 P 1 P=P_l...P_2P_1 P=Pl...P2P1
( A , E ) (A, E) (A,E)看成分块矩阵,后面的E为记录器,对分块矩阵 ( A , E ) (A, E) (A,E)进行初等行变换:
( A , E ) → P l . . . P 2 P 1 ( A , E ) → ( P l . . . P 2 P 1 A , P l . . . P 2 P 1 ) → ( P A , P ) → ( F , P ) (A, E) \rightarrow P_l...P_2P_1(A, E) \rightarrow (P_l...P_2P_1A, P_l...P_2P_1) \rightarrow (PA, P) \rightarrow (F, P) (A,E)Pl...P2P1(A,E)(Pl...P2P1A,Pl...P2P1)(PA,P)(F,P)
即当A化为F后E化为P。
那么若A可逆, A − 1 A = E A^{-1}A = E A1A=E,即将A化为单位阵,右边的E就化为 A − 1 A^{-1} A1

求 A − 1 B A^{-1}B A−1B

即将上面的“记录器”E换为B,将A化为E的一系列行变换操作(等效于左乘 A − 1 A^{-1} A1)全部作用到B上
A − 1 ( A , B ) = ( E , A − 1 B ) A^{-1}(A, B)=(E,A^{-1}B) A1(A,B)=(E,A1B)

LU分解

假设A是m*n矩阵并且可以化简为行阶梯形而不必经过行对换或数乘,则A可以分解成如下的形式:
A = ( 1 0 0 0 ∗ 1 0 0 ∗ ∗ 1 0 ∗ ∗ ∗ 1 ) ( ■ ∗ ∗ ∗ ∗ 0 ■ ∗ ∗ ∗ 0 0 0 ■ ∗ 0 0 0 0 0 ) = L U A= \begin{pmatrix} 1 & 0 & 0 & 0 \\* & 1 & 0 & 0 \\* & * & 1 & 0\\* & * & * & 1 \end{pmatrix} \begin{pmatrix} \blacksquare & * & * & * & * \\0 & \blacksquare & * & * & * \\0 & 0 & 0 & \blacksquare & *\\0 & 0 & 0 & 0 & 0 \end{pmatrix} =LU A= 1010010001 000000000 =LU
L是单位下三角矩阵,主对角线元素全是1,它其实是一系列 E ( i j ( k ) ) E(ij(k)) E(ij(k))类型初等矩阵的乘积,L可逆;U是A的一个等价的行阶梯形矩阵。

例1,求矩阵A的LU分解:


A = ( 2 4 2 1 5 2 4 − 1 9 ) A= \begin{pmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{pmatrix} A= 214451229

( A , E ) = ( 2 4 2 1 0 0 1 5 2 0 1 0 4 − 1 9 0 0 1 ) ∼ ( 2 4 2 1 0 0 0 3 1 − 1 2 1 0 0 − 9 5 − 2 0 1 ) ∼ ( 2 4 2 1 0 0 0 3 1 − 1 2 1 0 0 0 8 − 7 2 3 1 ) = ( U , p ) (A,E)=\begin{pmatrix} 2 & 4 & 2 & 1 & 0 & 0 \\ 1 & 5 & 2 & 0 & 1 & 0 \\ 4 & -1 & 9 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 4 & 2 & 1 & 0 & 0 \\ 0 & 3 & 1 & -\frac{1}{2} & 1 & 0 \\ 0 & -9 & 5 & -2 & 0 & 1 \end{pmatrix}\sim \begin{pmatrix} 2 & 4 & 2 & 1 & 0 & 0 \\ 0 & 3 & 1 & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 8 & -\frac{7}{2} & 3 & 1 \end{pmatrix} =(U, p) (A,E)= 214451229100010001 2004392151212010001 20043021812127013001 =(U,p)
U = P A ⇒ A = P − 1 U U=PA \Rightarrow A=P^{-1}U U=PAA=P1U,有
A = ( 2 4 2 1 5 2 4 − 1 9 ) = ( 1 0 0 1 2 1 0 2 − 3 1 ) ( 2 4 2 0 3 1 0 0 8 ) = L U A= \begin{pmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{pmatrix}= \begin{pmatrix} 1 & 0 & 0\\ \frac{1}{2} & 1 & 0\\ 2 & -3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & 2\\ 0 & 3 & 1\\ 0 & 0 & 8 \end{pmatrix}=LU A= 214451229 = 1212013001 200430218 =LU

例12,LU分解解线性方程组:

将系数矩阵进行LU分解,然后分两步解出方程
第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解,玩转线性代数,矩阵,线性代数,玩转线性代数
在具体求解时要使用数学软件来求,计算机解线性方程组时就采用LU分解.手动进行LU分解当然是比较麻烦的.文章来源地址https://www.toymoban.com/news/detail-646134.html

到了这里,关于第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 第三章,矩阵,08-矩阵的秩及相关性质

    玩转线性代数(20)矩阵的秩的笔记,相关证明以及例子见原文 设矩阵 A m ∗ n A_{m*n} A m ∗ n ​ ,称其标准形中单位矩阵子块的阶数为矩阵A的秩,记为 R ( A ) R(A) R ( A ) 设在矩阵A中有一个r阶子式 D ≠ 0 D neq 0 D  = 0 ,且所有r+1阶子式(如果存在的话)全等于0,那么D称为矩阵

    2024年02月12日
    浏览(33)
  • 第三章,矩阵,09-线性方程组解的判断与求法、矩阵方程

    玩转线性代数(21)线性方程组解的判断与求法的笔记,相关证明以及例子见原文 对n元线性方程组 A x = b Ax=b A x = b ,A为系数矩阵, B = ( A ∣ b ) B=(A|b) B = ( A ∣ b ) 为增广矩阵,则有 (1) A x = b Ax=b A x = b 无解 ⇔ R ( A ) R ( A , b ) Leftrightarrow R(A)lt R(A,b) ⇔ R ( A ) R ( A , b ) ; (2)

    2024年02月13日
    浏览(48)
  • 【考研数学】线形代数第三章——向量 | 3)向量秩的性质、向量空间、过渡矩阵

    紧接前文学习完向量组秩的基本概念后,继续往后学习向量的内容。 性质 1(三秩相等) —— 设 A = ( β 1 , β 2 , … , β n ) = ( α 1 , α 2 , … , α n ) T pmb{A=(beta_1,beta_2,dots,beta_n)=(alpha_1,alpha_2,dots,alpha_n)^T} A = ( β 1 ​ , β 2 ​ , … , β n ​ ) = ( α 1 ​ , α 2 ​ , … , α n ​ )

    2024年02月11日
    浏览(42)
  • 【考研数学】线形代数第三章——向量 | 3)向量组秩的性质、向量空间、过渡矩阵

    紧接前文学习完向量组秩的基本概念后,继续往后学习向量的内容。 性质 1(三秩相等) —— 设 A = ( β 1 , β 2 , … , β n ) = ( α 1 , α 2 , … , α n ) T pmb{A=(beta_1,beta_2,dots,beta_n)=(alpha_1,alpha_2,dots,alpha_n)^T} A = ( β 1 ​ , β 2 ​ , … , β n ​ ) = ( α 1 ​ , α 2 ​ , … , α n ​ )

    2024年02月09日
    浏览(50)
  • C语言——利用矩阵LU分解法求逆、行列式

    本章介绍了LU分解法,以及如何利用LU分解法求逆、行列式,针对每个公式、原理、代码进行了详细介绍,希望可以给大家带来帮助。 LU分解法与高斯法求逆一样,可以进行较高维数的矩阵运算(可计算万维及以上,但是精度不能保证,并且占有内存大,高维矩阵需要进行分块

    2024年02月03日
    浏览(43)
  • 线性代数-初等行变换与初等行矩阵

    初等行变换 :在矩阵的行上进行 倍加 、 倍乘 、 对换 变换 初等行矩阵 :在单位矩阵上应用初等行变换得到的矩阵 初等行矩阵 乘上矩阵 ,就相当于在矩阵 上实施了对应的初等行变换。 ** ** 倍加 :将第二行乘2加在第三行上,r3’ = 2 * r2 + r3. 所用的初等行矩阵 为: ,即单

    2024年02月11日
    浏览(42)
  • 矩阵的初等变换

            1.按类型分:初等行变换(动行),初等列变换(动列)         2.按方式分:                 1.交换矩阵的两行或者两列                 2.用一个不为0的数乘矩阵的某一行                 3.用一个任意的数乘矩阵的某一行或某一列再加到另一行或另一列  

    2024年02月20日
    浏览(31)
  • 分块矩阵的初等变换

            众所周知,线性代数是一门严谨却又不那么严谨的学科,我们常常从原始定义中得到高度抽象的结果,偶尔还能得到一些玄学结论。本人在学习线代课程时,无意中生发了这样一种想法:分块矩阵也可以进行初等变换吗?         我在计算分块行列式如 时,无

    2024年02月11日
    浏览(34)
  • 矩阵初等变换整理

    左乘行变换,右乘列变换 有三种初等矩阵: E i j E_{ij} E ij ​ 的一般形式: 先写出 E,然后直接对调i,j行即可 E i j E_{ij} E ij ​ 在左,则对调矩阵的行 E i j E_{ij} E ij ​ 在右,则对调矩阵的列 E i j ( k ) E_{ij}(k) E ij ​ ( k ) 的一般形式: 先写出E,然后将第j行i列元素改成 k E i j ( k

    2024年02月05日
    浏览(46)
  • 矩阵理论复习部分——线性代数(3)初等变换、逆矩阵

    一、初等变换3种方式 对调矩阵的两行(两列); 以 k ≠ 0 k not = 0 k  = 0 乘某一行(列)所有元素; 某一行(列)元素 k k k 倍加到另一行(列); 二、初等矩阵 初等矩阵是指由单位矩阵经过一次初等变换得到的矩阵。 左乘初等矩阵 = 行变换 右乘初等矩阵 = 列变换 初等矩

    2024年02月04日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包