简单线性回归:预测事物间简单关系的利器

这篇具有很好参考价值的文章主要介绍了简单线性回归:预测事物间简单关系的利器。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🍀简介

在数据科学领域,线性回归是一种基本而强大的统计分析方法。它广泛应用于各个领域,从经济学到生物医学研究,从市场营销到城市规划,目的是建立和利用变量之间的简单关系,以便预测未来趋势或做出决策。在本文中,我们将深入探讨简单线性回归的工作原理、应用场景和使用步骤,以帮助您更好地理解和应用这一强大的分析工具。


🍀什么是简单线性回归?

简单线性回归是一种线性回归模型的基本形式,用于分析两个变量之间的关系。其中一个变量被称为“自变量”或“预测变量”,而另一个变量被称为“因变量”或“响应变量”。简单线性回归假设自变量和因变量之间存在线性关系,即以自变量的值来预测因变量的值。


🍀简单线性回归的应用场景

  • 预测销售量:根据广告投入金额预测产品销售量。
  • 理解变量之间的关系:比如研究学习时间和考试分数之间是否存在正相关关系。
  • 预测趋势:根据过去几年的数据,预测未来的市场趋势。

使用步骤:

  • 收集数据:收集包含自变量和因变量的样本数据。
  • 数据预处理:对数据进行清洗,去除异常值或缺失数据。
  • 绘制散点图:可视化数据以了解自变量和因变量之间的总体关系。
  • 拟合回归线:使用最小二乘法拟合一条直线,使其最好地拟合数据分布。
  • 解释结果:根据回归线的斜率和截距解释变量之间的关系。
  • 进行预测:利用已知自变量的值,通过回归方程预测因变量的值。

注意事项:

  • 线性回归模型可能不适用于非线性关系的数据。
  • 数据的质量对于回归分析的准确性至关重要,要确保数据的准确性一致性
  • 线性回归模型的结果需要进行合理的解释和验证。

🍀代码演示

上代码前我们可以先了解一下最小二乘法

最小二乘法是一种常用的数学方法,用于拟合数据点与数学模型之间的关系。它的目标是通过调整模型的参数,使模型预测值与实际观测值之间的误差的平方和最小化。这种方法广泛应用于统计学、机器学习、工程学和自然科学等领域,用于分析和拟合数据,寻找数据背后的模式和趋势。

最小二乘法的基本思想是,通过最小化观测值与模型预测值之间的残差平方和来找到最优的模型参数。残差是指每个观测值与对应模型预测值之间的差异。通过求解最小化残差平方和的问题,可以得到最优的模型参数。

简单线性回归:预测事物间简单关系的利器,机器学习,机器学习,线性回归

公式的推导可以看这位大佬的文章https://blog.csdn.net/weixin_40255714/article/details/125841394

import numpy as np
import matplotlib.pyplot as plt
x = np.array([1,2,3,4,5])
y = np.array([1,3,2,3,5])
plt.scatter(x,y)
plt.axis([0,6,0,6])
plt.show()
#  y = a*x+b  需要计算出a和b
x_mean = np.mean(x)
y_mean = np.mean(y)
num = 0.0 # 分子
d = 0.0  #  分母
for x_i,y_i in zip(x,y):
    num += (x_i-x_mean)*(y_i-y_mean)
    d += (x_i-x_mean)**2
a = num/d
b = y_mean-a*x_mean

a和b求出来之后,我们就可以进行绘制一下,记住这里指的是找到一条直线,使得每一个点的预测值和真实值之差达到最小
简单线性回归:预测事物间简单关系的利器,机器学习,机器学习,线性回归

预测就很简单了,带入求值即可
简单线性回归:预测事物间简单关系的利器,机器学习,机器学习,线性回归

🍀结论

简单线性回归是一种简单而有效的分析方法,可用于预测和理解变量之间的关系。通过收集和处理数据,我们可以建立一个可靠的回归模型,从而进行预测和决策。但要注意变量之间的线性关系是否真实存在,并且合理解释结果。希望本文对您理解简单线性回归有所帮助,并且能够在您的实际问题中应用这一强大的分析工具。

简单线性回归:预测事物间简单关系的利器,机器学习,机器学习,线性回归

挑战与创造都是很痛苦的,但是很充实。文章来源地址https://www.toymoban.com/news/detail-646361.html

到了这里,关于简单线性回归:预测事物间简单关系的利器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习简介[01/2]:简单线性回归

    Python 中的机器学习简介:简单线性回归         简单线性回归为机器学习提供了优雅的介绍。它可用于标识自变量和因变量之间的关系。使用梯度下降,可以训练基本模型以拟合一组点以供未来预测。         这是涵盖回归、梯度下降、分类和机器学习的其他基本方

    2024年02月11日
    浏览(42)
  • 机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测

    随机梯度下降(SGD)也称为增量梯度下降,是一种迭代方法,用于优化可微分目标函数。该方法通过在小批量数据上计算损失函数的梯度而迭代地更新权重与偏置项。SGD在高度非凸的损失表面上远远超越了朴素梯度下降法,这种简单的爬山法技术已经主导了现代的非凸优化。

    2024年02月03日
    浏览(57)
  • 机器学习之利用线性回归预测波士顿房价和可视化分析影响房价因素实战(python实现 附源码 超详细)

    数据集和源码请点赞关注收藏后评论区留下QQ邮箱或者私信 线性回归是利用最小二乘函数对一个或多个因变量之间关系进行建模的一种回归分析,这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个变量的称为一元回归,大于一个变量的情况叫做多元回归。

    2024年01月21日
    浏览(51)
  • 机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】

    目录 前言 一、什么是线性回归 二、什么是逻辑回归 三、基于Python 和 Scikit-learn 库实现线性回归 示例代码:  使用线性回归来预测房价: 四、基于Python 和 Scikit-learn 库实现逻辑回归 五、总结  线性回归的优缺点总结: 逻辑回归(Logistic Regression)是一种常用的分类算法,具有

    2024年04月13日
    浏览(45)
  • PyTorch深度学习实战 | 预测工资——线性回归

    通过员工工作年限与工资的对应关系表,找出二者之间的关系,并预测在指定的年限时,工资会有多少。 通过员工工作年限与工资的对应关系表,找出二者之间的关系,并预测在指定的年限时,工资会有多少。 可以看出,这是一个用工作年限预

    2023年04月11日
    浏览(49)
  • 机器学习——线性回归/岭回归/Lasso回归

    线性回归会用到python第三方库:sklearn.linear_model中的LinearRegression 导入第三方库的方法:from sklearn.linear_model import LinearRegression 使用LinearRegression(二维数据,一维数据)进行预测,其中数据类型可以是pandas中的DataFrame或者series,也可以是numpy中的array数据,但维度一定要正确输入。

    2024年02月10日
    浏览(47)
  • 机器学习~从入门到精通(二)线性回归算法和多元线性回归

    SimpleLinearRegression.py moduel_selection.py draft.py lin_fit(x,y) lin_fit2(x,y) x.shape y.shape MSE mean squared error 均方误差 R squared error

    2024年02月01日
    浏览(71)
  • Spark-机器学习(3)回归学习之线性回归

    在之前的文章中,我们了解我们的机器学习,了解我们spark机器学习中的特征提取和我们的tf-idf,word2vec算法。想了解的朋友可以查看这篇文章。同时,希望我的文章能帮助到你,如果觉得我的文章写的不错,请留下你宝贵的点赞,谢谢。 Spark-机器学习(2)特征工程之特征提

    2024年04月22日
    浏览(44)
  • 【机器学习】多变量线性回归

    用向量实现的代码,单变量和多变量可以共用 多变量线性回归相当于是单变量的扩展,主要还是按照模型假设、构造代价函数和研究代价函数的最小值这样的思路展开。 与单变量线性回归不同的是,多变量线性回归还可能涉及到 特征缩放的问题 ,主要原因是存在着不同尺度

    2024年02月15日
    浏览(41)
  • 机器学习——多元线性回归算法

    多元线性回归算法,即多特征量线性回归算法,用多个特征量来进行预测,如这里用多个特征量(房子面积、卧室数量、房屋楼层数、房子年龄)来预测房子的售价问题 假如有一个多特征量的机器学习问题,并且这个问题中的多个特征可以在一个相近的范围内取值,那么可以

    2024年02月22日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包