基于深度学习的多模态语音识别:如何提高语音识别准确率和鲁棒性

这篇具有很好参考价值的文章主要介绍了基于深度学习的多模态语音识别:如何提高语音识别准确率和鲁棒性。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者:禅与计算机程序设计艺术

随着语音识别技术的发展,采用多种模态(声学、语言模型、视觉特征等)进行联合建模,基于深度学习的多模态语音识别取得了新进展。传统的声学模型或手工特征工程方法已经无法满足实时、高精度、低延迟的需求,多模态语音识别需要解决复杂多样的信号间相关性问题,以充分发挥声学、语言及视觉特征等信息融合的优势。目前,多模态语音识别已成为计算机语音识别领域一个热门方向。本文将详细阐述多模态语音识别背后的基本理论,以及基于深度学习的多模态语音识别技术架构。此外,还将给出基于改进的卷积神经网络(CNN-GLU)以及注意力机制的改进多模态语音识别技术在实际中的应用效果,并分析其在语音识别准确率、鲁棒性、可解释性、推理速度等方面的优缺点。

2.基本概念术语说明

(一)语音识别的基本术语

语音识别(Speech Recognition)是指通过对人的声音进行计算机处理实现文字、拼音等语言自动转换的过程。人类在说话的时候,产生的语音信号经过不同传感器和器官,被编码成电信号传输到接收器端,通过解码器,最终还原成文本或语音。

(二)声学特征

声学特征(Acoustic Feature)包括了语音信号的短时功率谱(Power Spectrum Density),即频谱的密度分布。声学特征是判别语音的关键之一。一般来说,由机器学习算法训练出的声学模型能够在某些场景下替代人工设计的人工声学模型,因此,声学模型可以帮助我们更好地理解语音信号。

(三)语言模型

语言模型(Language Model)是语音识别中用来刻画语言发展规律的模型,它利用历史数据统计得到一个概率分布ÿ文章来源地址https://www.toymoban.com/news/detail-646461.html

到了这里,关于基于深度学习的多模态语音识别:如何提高语音识别准确率和鲁棒性的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于树莓派构建深度学习语音识别系统

    +v hezkz17进数字音频系统研究开发交流答疑裙   1 Linux 音频框架如何做语音识别系统?   要在Linux上构建一个语音识别系统,可以使用以下步骤和工具: 安装音频框架:在Linux上运行语音识别系统需要一个适当的音频框架。常见的选择包括 ALSA(Advanced Linux Sound Architecture)和

    2024年02月15日
    浏览(46)
  • 基于深度学习的语音识别算法的设计与实现

    收藏和点赞,您的关注是我创作的动力   语音识别(Speech Recognition)是一种让机器通过识别音频把语音信号转变为相 应的文本或命令的技术语音识别技术主要有模式匹配识别法,声学特征提取,声学模型 建模 ,语言模型建模等技术组成。借助机器学习领域中的深度学习的

    2024年02月06日
    浏览(48)
  • 基于百度语音识别API智能语音识别和字幕推荐系统——深度学习算法应用(含全部工程源码)+测试数据集

    本项目基于百度语音识别API,结合了语音识别、视频转换音频识别以及语句停顿分割识别等多种技术,从而实现了高效的视频字幕生成。 首先,我们采用百度语音识别API,通过对语音内容进行分析,将音频转换成文本。这个步骤使得我们能够从语音中提取出有意义的文本信息

    2024年02月13日
    浏览(55)
  • 基于深度学习的中文语音识别系统(计算机毕设 附完整代码)

    该系统实现了基于深度框架的语音识别中的声学模型和语言模型建模,其中声学模型包括 CNN-CTC、GRU-CTC、CNN-RNN-CTC,语言模型包含 transformer、CBHG,数据集包含 stc、primewords、Aishell、thchs30 四个数据集。 本项目现已训练一个迷你的语音识别系统,将项目下载到本地上,下载 th

    2024年02月11日
    浏览(76)
  • 音频深度学习变得简单:自动语音识别 (ASR),它是如何工作的

            在过去的几年里,随着Google Home,Amazon Echo,Siri,Cortana等的普及,语音助手已经无处不在。这些是自动语音识别 (ASR) 最著名的示例。此类应用程序从某种语言的语音音频剪辑开始,并将说出的单词提取为文本。因此,它们也称为语音转文本算法。         

    2024年02月15日
    浏览(40)
  • AIGC领域的多模态深度学习你知道多少?一文带你Get

    Look!👀我们的大模型商业化落地产品 📖更多AI资讯请👉🏾关注 Free三天集训营助教在线为您火热答疑👩🏼‍🏫 什么是多模态深度学习? 多模态深度学习(英文名:Multimodal Deep Learning)是人工智能(AI)的一个子领域, 其重点是开发能够同时处理和学习多种类型数据的模型。这些

    2024年01月20日
    浏览(61)
  • 基于深度学习的语音识别(Deep Learning-based Speech Recognition)

    随着科技的快速发展,人工智能领域取得了巨大的进步。其中,深度学习算法以其强大的自学能力,逐渐应用于各个领域,并取得了显著的成果。在语音识别领域,基于深度学习的技术也已经成为了一种主流方法,极大地推动了语音识别技术的发展。本文将从深度学习算法的

    2024年02月04日
    浏览(50)
  • 基于Python+百度语音的智能语音ChatGPT聊天机器人(机器学习+深度学习+语义识别)含全部工程源码 适合个人二次开发

    本项目基于机器学习和语义识别技术,让机器人理解文本并进行合适的答复。伙伴们可以通过该工程源码,进行个人二次开发,比如使用语音与机器人交流,实现智能问答、智能音箱及智能机器宠物等等。 当然针对现在最火爆的 ChatGPT等通用大语言模型 ,伙伴们可以直接将其

    2024年02月07日
    浏览(55)
  • 【让我们深度理解语音识别:Siri与Alexa如何运用深度学习和循环神经网络将声音转化为文字

    语音识别技术是近年来人工智能领域的重要研究对象,它的出现大大改善了人与机器的交互方式,增强了人们生活的便捷度。今天,我将带领大家深度了解语音识别技术的内部运作原理,以及语音助手如Siri和Alexa如何运用这些先进技术,实现从声音到文字的转化。在探讨技术

    2024年02月12日
    浏览(38)
  • 基于Python+WaveNet+CTC+Tensorflow智能语音识别与方言分类—深度学习算法应用(含全部工程源码)

    本项目利用语音文件和方言标注文件,提取语音的梅尔倒谱系数特征,并对这些特征进行归一化处理。在基于标注文件的指导下,构建了一个字典来管理数据。接着,我们选择WaveNet机器学习模型进行训练,并对模型的输出进行softmax处理。最终,经过训练后的模型将被保存以

    2024年02月16日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包