【图像分类】理论篇(2)经典卷积神经网络 Lenet~Densenet

这篇具有很好参考价值的文章主要介绍了【图像分类】理论篇(2)经典卷积神经网络 Lenet~Densenet。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1、卷积运算

2、经典卷积神经网络

2.1 Lenet

网络构架

代码实现

2.2 Alexnet

网络构架

代码实现

2.3 VGG

VGG16网络构架

代码实现

2.4 ResNet

ResNet50网络构架

代码实现

1、卷积运算

【图像分类】理论篇(2)经典卷积神经网络 Lenet~Densenet,cnn,人工智能,神经网络

 在二维卷积运算中,卷积窗口从输入张量的左上角开始,从左到右、从上到下滑动。 当卷积窗口滑动到新一个位置时,包含在该窗口中的部分张量与卷积核张量进行按元素相乘,得到的张量再求和得到一个单一的标量值,由此我们得出了这一位置的输出张量值。 在如上例子中,输出张量的四个元素由二维互相关运算得到,这个输出高度为2、宽度为2,如下所示:

【图像分类】理论篇(2)经典卷积神经网络 Lenet~Densenet,cnn,人工智能,神经网络

import torch
from torch import nn

def Conv2d(X, K):  
    """计算二维卷积运算"""
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y

2、经典卷积神经网络

2.1 Lenet

网络构架:

【图像分类】理论篇(2)经典卷积神经网络 Lenet~Densenet,cnn,人工智能,神经网络

代码实现:

import torch
import torch.nn as nn

class LeNet(nn.Module):
    def __init__(self, num_classes=10):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
        self.pool1 = nn.MaxPool2d(kernel_size=2)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
        self.pool2 = nn.MaxPool2d(kernel_size=2)
        self.fc1 = nn.Linear(in_features=16*5*5, out_features=120)
        self.fc2 = nn.Linear(in_features=120, out_features=84)
        self.fc3 = nn.Linear(in_features=84, out_features=num_classes)

    def forward(self, x):
        x = self.pool1(torch.relu(self.conv1(x)))
        x = self.pool2(torch.relu(self.conv2(x)))
        x = x.view(-1, 16*5*5)
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 创建LeNet模型
model = LeNet(num_classes=10)
print(model)

LeNet实现适用于MNIST数据集,其中输入图像大小为28x28,输出类别数为10(0-9的手写数字)。

2.2 Alexnet

网络构架:

 【图像分类】理论篇(2)经典卷积神经网络 Lenet~Densenet,cnn,人工智能,神经网络

【图像分类】理论篇(2)经典卷积神经网络 Lenet~Densenet,cnn,人工智能,神经网络

代码实现:

import torch
import torch.nn as nn

class AlexNet(nn.Module):
    def __init__(self, num_classes=1000):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

# 创建AlexNet模型
model = AlexNet(num_classes=1000)
print(model)

代码中的AlexNet实现适用于ImageNet数据集,其中输入图像大小为224x224,输出类别数为1000。

2.3 VGG

VGG16网络构架:

【图像分类】理论篇(2)经典卷积神经网络 Lenet~Densenet,cnn,人工智能,神经网络

【图像分类】理论篇(2)经典卷积神经网络 Lenet~Densenet,cnn,人工智能,神经网络

代码实现:

import torch
import torch.nn as nn

class VGG16(nn.Module):
    def __init__(self, num_classes=1000):
        super(VGG16, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x

# 创建VGG16模型
model = VGG16(num_classes=1000)
print(model)

代码中的VGG16实现适用于ImageNet数据集,其中输入图像大小为224x224,输出类别数为1000。

2.4 ResNet

ResNet50网络构架:

【图像分类】理论篇(2)经典卷积神经网络 Lenet~Densenet,cnn,人工智能,神经网络代码实现:

import torch
import torch.nn as nn

# 定义残差块
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        
        if stride != 1 or in_channels != out_channels:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels)
            )
        else:
            self.downsample = None
        
    def forward(self, x):
        identity = x
        
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        
        x = self.conv2(x)
        x = self.bn2(x)
        
        if self.downsample is not None:
            identity = self.downsample(identity)
            
        x += identity
        x = self.relu(x)
        
        return x

# 定义ResNet-50
class ResNet50(nn.Module):
    def __init__(self, num_classes=1000):
        super(ResNet50, self).__init__()
        self.in_channels = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        
        self.layer1 = self._make_layer(64, 3, stride=1)
        self.layer2 = self._make_layer(128, 4, stride=2)
        self.layer3 = self._make_layer(256, 6, stride=2)
        self.layer4 = self._make_layer(512, 3, stride=2)
        
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * 4, num_classes)
        
    def _make_layer(self, out_channels, num_blocks, stride):
        layers = []
        layers.append(ResidualBlock(self.in_channels, out_channels, stride))
        self.in_channels = out_channels
        for _ in range(1, num_blocks):
            layers.append(ResidualBlock(out_channels, out_channels))
        return nn.Sequential(*layers)
        
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        
        return x

# 创建ResNet-50模型
model = ResNet50(num_classes=1000)
print(model)

代码中的ResNet50实现适用于ImageNet数据集,其中输入图像大小为224x224,输出类别数为1000。

【图像分类】 理论篇(1) 图像分类的测评指标_TechMasterPlus的博客-CSDN博客

【图像分类】理论篇(3)交叉熵损失函数的理解与代码实现_TechMasterPlus的博客-CSDN博客

【图像分类】理论篇(4)图像增强opencv实现_TechMasterPlus的博客-CSDN博客文章来源地址https://www.toymoban.com/news/detail-646556.html

到了这里,关于【图像分类】理论篇(2)经典卷积神经网络 Lenet~Densenet的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包