【Pytroch】基于K邻近算法的数据分类预测(Excel可直接替换数据)

这篇具有很好参考价值的文章主要介绍了【Pytroch】基于K邻近算法的数据分类预测(Excel可直接替换数据)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.模型原理

K最近邻(K-Nearest Neighbors,简称KNN)是一种简单但常用的机器学习算法,用于分类和回归问题。它的核心思想是基于已有的训练数据,通过测量样本之间的距离来进行分类预测。在实现KNN算法时,可以使用PyTorch来进行计算和操作。

下面是使用PyTorch实现KNN算法的一般步骤:

  1. 准备数据集:首先,需要准备训练数据集,包括样本特征和对应的标签。

  2. 计算距离:对于每个待预测的样本,计算它与训练数据集中每个样本的距离。常见的距离度量包括欧氏距离、曼哈顿距离等。

  3. 排序与选择:将计算得到的距离按照从小到大的顺序进行排序,并选择距离最近的K个样本。

  4. 投票或平均:对于分类问题,选择K个文章来源地址https://www.toymoban.com/news/detail-647281.html

到了这里,关于【Pytroch】基于K邻近算法的数据分类预测(Excel可直接替换数据)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包