Python-OpenCV中的图像处理-形态学转换

这篇具有很好参考价值的文章主要介绍了Python-OpenCV中的图像处理-形态学转换。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

形态学转换

  • 形态学操作:腐蚀,膨胀,开运算,闭运算,形态学梯度,礼帽,黑帽等
  • 主要涉及函数:cv2.erode(), cv2.dilate(), cv2.morphologyEx()
  • 原理:形态学操作是根据图像形状进行的简单操作。一般情况下对二值化图像进行的操作。需要输入两个参数,一个是原始图像,第二个被称为结构化元素或核,它是用来决定操作的性质的。两个基本的形态学操作是腐蚀和膨胀。他们的变体构成了开运算,闭运算,梯度等。

腐蚀

就像土壤侵蚀一样,这个操作会把前景物体的边界腐蚀掉(但是前景仍然是白色)。这是怎么做到的呢?卷积核沿着图像滑动,如果与卷积核对应的原图像的所有像素值都是 1,那么中心元素就保持原来的像素值,否则就变为零。这回产生什么影响呢?根据卷积核的大小靠近前景的所有像素都会被腐蚀掉(变为 0),所以前景物体会变小,整幅图像的白色区域会减少。这对于去除白噪声很有用,也可以用来断开两个连在一块的物体等。

import numpy as np
import cv2
from matplotlib import pyplot as plt


img = cv2.imread('./resource/opencv/image/Morphology_1_Tutorial_Theory_Dilation.png', cv2.IMREAD_GRAYSCALE)
kernel = np.ones((5,5), np.uint8)
erosion = cv2.erode(img, kernel=kernel, iterations=1)

plt.subplot(121), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.title('origin'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(cv2.cvtColor(erosion, cv2.COLOR_BGR2RGB)), plt.title('erode'), plt.xticks([]), plt.yticks([])
plt.show()

Python-OpenCV中的图像处理-形态学转换,python,opencv,图像处理

膨胀

与腐蚀相反,与卷积核对应的原图像的像素值中只要有一个是 1,中心元素的像素值就是 1。所以这个操作会增加图像中的白色区域(前景)。一般在去噪声时先用腐蚀再用膨胀。因为腐蚀在去掉白噪声的同时,也会使前景对象变小。所以我们再对他进行膨胀。这时噪声已经被去除了,不会再回来了,但是前景还在并会增加。膨胀也可以用来连接两个分开的物体。

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 膨胀
img = cv2.imread('./resource/opencv/image/Morphology_1_Tutorial_Theory_Original_Image.png', cv2.IMREAD_GRAYSCALE)

kernel = np.ones((5,5), np.uint8)
dilation = cv2.dilate(img, kernel=kernel, iterations=1)

plt.subplot(121), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.title('origin'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(cv2.cvtColor(dilation, cv2.COLOR_BGR2RGB)), plt.title('dilate'), plt.xticks([]), plt.yticks([])
plt.show()

Python-OpenCV中的图像处理-形态学转换,python,opencv,图像处理

开运算

先腐蚀再膨胀就叫做开运算。它被用来去除噪声。这里我们用到的函数是 cv2.morphologyEx()
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

闭运算

先膨胀再腐蚀就叫做闭运算。它经常被用来填充前景物体中的小洞,或者前景物体上的小黑点
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

形态学梯度

其实就是一幅图像膨胀与腐蚀的差别,结果看上去就像前景物体的轮廓。
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)

礼帽

原始图像与进行开运算之后得到的图像的差。下面的例子是用一个 9x9 的核进行礼帽操作的结果。
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)

黑帽

进行闭运算之后得到的图像与原始图像的差
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)

形态学操作之间的关系

形态学转换

  • Opening:
    dst = open(src, element) = dilate(erode(src, element), element)
  • Closing:
    dst = close(src, element) = erode(dilate(src, element), element)
  • Morphological gradient:
    dst = morph_grad(src, element) = dilate(src, element) - erode(src, element)
  • “Top hat”:
    dst = tophat(src, element) = src - open(src, element)
  • “Black hat”:
    dst = blackhat(src, element) = close(src, element) - src

形态学代码例程

import numpy as np
import cv2
from matplotlib import pyplot as plt

'''
形态学转换
Opening: 
    dst = open(src, element) = dilate(erode(src, element), element)

Closing:
    dst = close(src, element) = erode(dilate(src, element), element)

Morphological gradient:
    dst = morph_grad(src, element) = dilate(src, element) - erode(src, element)

"Top hat":
    dst = tophat(src, element) = src - open(src, element)

"Black hat":
    dst = blackhat(src, element) = close(src, element) - src
'''

# 开运算
# 先进行腐蚀在进行膨胀叫做开运算。用来去除噪音
# opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

# 闭运算
# 先进行膨胀再进行腐蚀叫做闭运算。用来填充前景物体中的小洞,或者全景上的小黑点。
# closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

# 形态学梯度
# 就是一副图像膨胀与腐蚀的差别,结果看上去就像前景物体的轮廓。
# gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)

# 礼帽
# 原始图像与进行开运算之后得到的图像的差
# tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)

# 黑帽
# 原始图像与进行闭运算之后得到的图像的差
# blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)

# 结构化元素
kernel_rect = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))       # 矩形核
kernel_elli = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))    # 椭圆核
kernel_cros = cv2.getStructuringElement(cv2.MORPH_CROSS, (5,5))      # 十字核

# 卷积核
# kernel = kernel_rects
# kernel = kernel_elli
# kernel = kernel_cros
kernel = np.ones((5,5), np.uint8)
kernel9x9 = np.ones((15,15), np.uint8)

img_origin = cv2.imread('./resource/opencv/image/Morphology_1_Tutorial_Theory_Dilation.png', cv2.IMREAD_COLOR)
img_gray = cv2.imread('./resource/opencv/image/Morphology_1_Tutorial_Theory_Dilation.png', cv2.IMREAD_GRAYSCALE)

# 开运算 腐蚀=>膨胀
opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel)

# 闭运算 膨胀=>腐蚀
closing = cv2.morphologyEx(img_gray, cv2.MORPH_CLOSE, kernel)

# 梯度 膨胀-腐蚀 
gradient = cv2.morphologyEx(img_gray, cv2.MORPH_GRADIENT, kernel)

# 礼帽  原始图像与进行开运算之后得到的图像的差
tophat = cv2.morphologyEx(img_gray, cv2.MORPH_TOPHAT, kernel9x9)

# 黑帽 进行闭运算之后与原始图像的图像的差
blackhat = cv2.morphologyEx(img_gray, cv2.MORPH_BLACKHAT, kernel9x9)

# 腐蚀
erosion = cv2.erode(img_gray, kernel=kernel, iterations=1)

# 膨胀 
dilation = cv2.dilate(img_gray, kernel=kernel, iterations=1)

plt.subplot(331), plt.imshow(cv2.cvtColor(img_origin,cv2.COLOR_BGR2RGB), 'gray'), plt.title('origin'), plt.xticks([]), plt.yticks([])
plt.subplot(332), plt.imshow(img_gray, 'gray'), plt.title('gray'), plt.xticks([]), plt.yticks([])
plt.subplot(333), plt.imshow(opening, 'gray'), plt.title('open'), plt.xticks([]), plt.yticks([])
plt.subplot(334), plt.imshow(closing, 'gray'), plt.title('close'), plt.xticks([]), plt.yticks([])
plt.subplot(335), plt.imshow(gradient, 'gray'), plt.title('gradient'), plt.xticks([]), plt.yticks([])
plt.subplot(336), plt.imshow(tophat, 'gray'), plt.title('tophat'), plt.xticks([]), plt.yticks([])
plt.subplot(337), plt.imshow(blackhat, 'gray'), plt.title('blackhat'), plt.xticks([]), plt.yticks([])
plt.subplot(338), plt.imshow(erosion, 'gray'), plt.title('erode'), plt.xticks([]), plt.yticks([])
plt.subplot(339), plt.imshow(dilation, 'gray'), plt.title('dilate'), plt.xticks([]), plt.yticks([])
plt.show()

Python-OpenCV中的图像处理-形态学转换,python,opencv,图像处理文章来源地址https://www.toymoban.com/news/detail-647400.html

到了这里,关于Python-OpenCV中的图像处理-形态学转换的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python-OpenCV中的图像处理-图像直方图

    通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值( 0 到 255), y 轴是图片中具有同一个灰度的点的数目。 BINS:上面的直方图显示了每个灰度值对应的像素数。如果像素值为 0到255,你就需要 256 个数来显示上面的直方图。但是,如果你不需

    2024年02月12日
    浏览(68)
  • Python-OpenCV中的图像处理-图像金字塔

    同一图像的不同分辨率的子图集合,如果把最大的图像放在底部,最小的放在顶部,看起来像一座金字塔,故而得名图像金字塔。 cv2.pyrUp():上采样 cv2.pyrDown():下采样 高斯金字塔的顶部是通过将底部图像中的连续的行和列去除得到的。顶部图像中的每个像素值等于下一层图

    2024年02月13日
    浏览(61)
  • Python-OpenCV中的图像处理-霍夫变换

    霍夫(Hough)变换在检测各种形状的技术中非常流行,如果要检测的形状可以用数学表达式描述,就可以是使用霍夫变换检测它。即使要检测的形状存在一点破坏或者扭曲也是可以使用。 Hough直线变换,可以检测一张图像中的直线 cv2.HoughLines(image, rho, theta, threshold) return:返回值

    2024年02月13日
    浏览(58)
  • Python-OpenCV中的图像处理-几何变换

    对图像进行各种几个变换,例如移动,旋转,仿射变换等。 cv2.resize() cv2.INTER_AREA v2.INTER_CUBIC v2.INTER_LINEAR res = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) 或 height, width = img.shape[:2] res = cv2.resize(img, (2 width, 2 height), interpolation=cv2.INTER_CUBIC) OpenCV提供了使用函数cv2.warpAffine()实

    2024年02月13日
    浏览(87)
  • Python-OpenCV中的图像处理-边缘检测

    Canny 边缘检测是一种非常流行的边缘检测算法,是 John F.Canny 在 1986 年提出的。它是一个有很多步构成的算法:噪声去除、计算图像梯度、非极大值抑制、滞后阀值等。 Canny(image: Mat, threshold1, threshold2, edges=…, apertureSize=…, L2gradient=…) 在 OpenCV 中只需要一个函数: cv2.Canny(),

    2024年02月13日
    浏览(54)
  • Python-OpenCV中的图像处理-物体跟踪

    现在我们知道怎样将一幅图像从 BGR 转换到 HSV 了,我们可以利用这一点来提取带有某个特定颜色的物体。在 HSV 颜色空间中要比在 BGR 空间中更容易表示一个特定颜色。在我们的程序中,我们要提取的是一个蓝色的物体。下面就是就是我们要做的几步: • 从视频中获取每一帧

    2024年02月13日
    浏览(54)
  • Python-OpenCV中的图像处理-直方图

    通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值( 0 到 255), y 轴是图片中具有同一个灰度的点的数目。 BINS:上面的直方图显示了每个灰度值对应的像素数。如果像素值为 0到255,你就需要 256 个数来显示上面的直方图。但是,如果你不需

    2024年02月13日
    浏览(72)
  • Python-OpenCV中的图像处理-颜色空间转换

    在 OpenCV 中有超过 150 中进行颜色空间转换的方法。但是你以后就会 发现我们经常用到的也就两种: BGR G r a y 和 B G R Gray 和 BGR G r a y 和 BGR HSV。 注意:在 OpenCV 的 HSV 格式中, H(色彩/色度)的取值范围是 [0, 179],S(饱和度)的取值范围 [0, 255], V(亮度)的取值范围 [0,

    2024年02月13日
    浏览(39)
  • Python-OpenCV中的图像处理-傅里叶变换

    傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT 的一个快速算法被称为快速傅里叶变换( FFT)。 对于一个正弦信号:x (t) = A sin (2πft), 它的频率为 f,如果把这个信号转到它的频域表示,我们会在频率

    2024年02月12日
    浏览(58)
  • Python-OpenCV中的图像处理-GrabCut算法交互式前景提取

    cv2.grabCut(img: Mat, mask: typing.Optional[Mat], rect, bgdModel, fgdModel, iterCount, mode=…) img:输入图像 mask:掩模图像,用来确定那些区域是背景,前景,可能是前景/背景等。 可以设置为: cv2.GC_BGD,cv2.GC_FGD,cv2.GC_PR_BGD,cv2.GC_PR_FGD,或者直接输入 0,1,2,3 也行。 rect :包含前景的矩形,格式为

    2024年02月13日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包