多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测

这篇具有很好参考价值的文章主要介绍了多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测

预测效果

多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测,时间序列,CNN-BiGRU,ZOA-CNN-BiGRU,Attention,多变量时间序列预测
多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测,时间序列,CNN-BiGRU,ZOA-CNN-BiGRU,Attention,多变量时间序列预测

多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测,时间序列,CNN-BiGRU,ZOA-CNN-BiGRU,Attention,多变量时间序列预测

基本介绍

1.Matlab基于ZOA-CNN-BiGRU-Attention斑马优化卷积双向门控循环单元网络融合注意力机制的多变量时间序列预测算法,
2.要求2021版以上。多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测,对卷积核大小、BiGRU神经元个数、学习率进行寻优,以最小MAPE为目标函数,展示MAPE、RMSE、MAE的计算结果。
3.适用于,风速预测,光伏功率预测,发电功率预测,出力预测,海上风电预测,碳价预测等等。
4.斑马优化算法(Zebra Optimization Algorithm,ZOA)等人于2022年底提出的新算法,对比于灰狼GWO、鲸鱼WOA、遗传GA、粒子群PSO等算法有着更高的创新性。
5.直接替换数据就可以,使用EXCEL表格直接导入,不需要对程序大幅修改。程序内有详细注释,便于理解程序运行。

模型描述

斑马优化卷积双向门控循环单元网络融合注意力机制的多变量时间序列预测算法是一种用于预测多变量时间序列数据的算法。它结合了多种神经网络技术,包括斑马优化算法、卷积神经网络、双向门控循环单元网络和注意力机制。首先,将多变量时间序列数据进行归一化处理,确保数据在相似的尺度上。然后,将数据划分为训练集和测试集。使用斑马优化算法来优化神经网络的权重和偏置。斑马优化算法是一种群体智能算法,灵感来自斑马的群体行为。它通过模拟斑马在寻找食物时的行为,来搜索最优解。将卷积层、池化层和全连接层组合起来构建卷积神经网络。卷积层可以提取时间序列数据的局部特征,池化层可以减少参数数量并保持特征的空间结构,全连接层可以将提取的特征映射到输出。使用双向门控循环单元来学习时间序列数据的长期依赖关系。双向GRU可以同时考虑过去和未来的信息,捕捉到时间序列数据中的动态模式。引入注意力机制来增强模型对重要时间步的关注。注意力机制可以根据输入数据的重要性分配不同的注意力权重,使模型能够更好地聚焦于关键的时间步。将斑马优化算法、CNN、Bi-GRU和注意力机制融合在一起构建完整的预测模型。通过优化网络权重和偏置,模型可以学习时间序列数据中的模式和规律,并进行准确的多变量预测。使用测试集对模型进行评估,计算预测结果与真实值之间的误差,例如均方根误差(RMSE)或平均绝对误差(MAE)等指标。斑马优化卷积双向门控循环单元网络融合注意力机制的多变量时间序列预测算法可以提供准确的多变量时间序列预测结果,并在实际应用中具有较好的性能。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测获取。
 
        gruLayer(32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop2')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0
    mydevice = 'gpu';
else
    mydevice = 'cpu';
end
    options = trainingOptions('adam', ...
        'MaxEpochs',MaxEpochs, ...
        'MiniBatchSize',MiniBatchSize, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',learningrate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',56, ...
        'LearnRateDropFactor',0.25, ...
        'L2Regularization',1e-3,...
        'GradientDecayFactor',0.95,...
        'Verbose',false, ...
        'Shuffle',"every-epoch",...
        'ExecutionEnvironment',mydevice,...
        'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501文章来源地址https://www.toymoban.com/news/detail-647418.html

到了这里,关于多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 时序预测 | MATLAB实现CNN-BiGRU卷积双向门控循环单元时间序列预测

    预测效果 基本介绍 1.MATLAB实现CNN-BiGRU卷积双向门控循环单元时间序列预测; 2.运行环境为Matlab2021b; 3.单个变量时间序列预测; 4.data为数据集,单个变量excel数据,MainCNN_BiGRUTS.m为主程序,运行即可,所有文件放在一个文件夹; 5.命令窗口输出R2、MSE、RMSE、MAE、MAPE多指标评价;

    2024年02月10日
    浏览(48)
  • 时序预测 | MATLAB实现POA-CNN-BiGRU鹈鹕算法优化卷积双向门控循环单元时间序列预测

    预测效果 基本介绍 MATLAB实现POA-CNN-BiGRU鹈鹕算法优化卷积双向门控循环单元时间序列预测(完整源码和数据) 1.MATLAB实现POA-CNN-BiGRU鹈鹕算法优化卷积双向门控循环单元时间序列预测(完整源码和数据) 2.输入输出单个变量,时间序列预测预测; 3.多指标评价,评价指标包括:

    2024年02月07日
    浏览(44)
  • 时序预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元时间序列预测

    预测效果 基本介绍 时序预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。 1.MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元多输入单输出时间序列预测 2.单变量时间序列预

    2024年02月12日
    浏览(53)
  • 多维时序 | MATLAB实现PSO-CNN-BiLSTM多变量时间序列预测

    基本介绍 本次运行测试环境MATLAB2021b,MATLAB实现PSO-CNN-BiLSTM多变量时间序列预测。代码说明:基于粒子群优化算法(PSO)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的多变量时间序列预测算法。 模型特点 深度学习使用分布式的分层特征表示方法自动提取数据中的从

    2024年02月12日
    浏览(47)
  • 多维时序 | MATLAB实现SCNGO-CNN-Attention多变量时间序列预测

    预测效果 基本介绍 1.SCNGO-CNN-Attention超前24步多变量回归预测算法。 程序平台:无Attention适用于MATLAB 2020版及以上版本;融合Attention要求Matlab2023版以上; 2.基于融合正余弦和折射反向学习的北方苍鹰优化算法(SCNGO)、卷积神经网络(CNN)融合注意力机制的超前24步多变量时间

    2024年02月12日
    浏览(44)
  • 时序预测 | MATLAB实现基于CNN-BiGRU卷积双向门控循环单元的时间序列预测-递归预测未来(多指标评价)

    预测结果 基本介绍 MATLAB实现基于CNN-BiGRU卷积双向门控循环单元的时间序列预测-递归预测未来(多指标评价) 1.MATLAB实现基于CNN-BiGRU卷积双向门控循环单元的时间序列预测-递归预测未来(多指标评价); 2.运行环境Matlab2020及以上,data为数据集,单变量时间序列预测; 3.递归预测未

    2024年02月12日
    浏览(47)
  • 多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测

    预测效果 基本介绍 多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测。 模型描述 MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测 1.无Attention适用于MATLAB 2020版及以上版本;融合Attention要求Matlab2023版以上; 2.基于减法平均优化器优化算法(SABO)、卷积神经网络(CNN)和

    2024年02月11日
    浏览(55)
  • 多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测

    预测效果 基本介绍 MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测,WOA-CNN-GRU-Attention结合注意力机制多变量时间序列预测。 模型描述 Matlab实现WOA-CNN-GRU-Attention多变量时间序列预测 1.融合Attention要求Matlab2023版以上; 2.基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和门控循环

    2024年02月12日
    浏览(48)
  • 多维时序 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络的数据多变量时间序列预测

    效果一览 基本介绍 多维时序 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络的数据多变量时间序列预测 MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络的数据多变量时间序列预测 输入7个特征,输出1个,即多输入单输出;优化参数为学习率,批大小,正则化系数。 运行环境Matlab201

    2024年02月12日
    浏览(51)
  • 多维时序 | MATLAB实现BO-CNN-BiLSTM贝叶斯优化卷积双向长短期记忆网络数据多变量时间序列预测

    效果一览 基本介绍 基于贝叶斯优化卷积双向长短期记忆网络(CNN-BiLSTM)多变量时间序列预测,BO-CNN-BiLSTM/Bayes-CNN-BiLSTM多变量时间序列预测模型。 1.优化参数为:学习率,隐含层节点,正则化参数。 2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等,方便学习和替换数据。 3.运行环境ma

    2023年04月23日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包