Pytorch基于VGG cosine similarity实现简单的以图搜图(图像检索)

这篇具有很好参考价值的文章主要介绍了Pytorch基于VGG cosine similarity实现简单的以图搜图(图像检索)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

代码如下:

from PIL import Image
from torchvision import transforms
import os
import torch
import torchvision
import torch.nn.functional as F

class VGGSim(torch.nn.Module):
    def __init__(self):
        super(VGGSim, self).__init__()
        blocks = []
        blocks.append(torchvision.models.vgg16(pretrained=True).features[:4].eval())
        blocks.append(torchvision.models.vgg16(pretrained=True).features[4:9].eval())
        blocks.append(torchvision.models.vgg16(pretrained=True).features[9:16].eval())
        blocks.append(torchvision.models.vgg16(pretrained=True).features[16:23].eval())
        for bl in blocks:
            for p in bl:
                p.requires_grad = False
        self.blocks = torch.nn.ModuleList(blocks)
        self.transform = torch.nn.functional.interpolate
        self.mean = torch.nn.Parameter(torch.tensor([0.485, 0.456, 0.406]).view(1,3,1,1))
        self.std = torch.nn.Parameter(torch.tensor([0.229, 0.224, 0.225]).view(1,3,1,1))

    def forward(self, input, target):
        if input.shape[1] != 3:
            input = input.repeat(1, 3, 1, 1)
            target = target.repeat(1, 3, 1, 1)
        input = (input-self.mean) / self.std
        target = (target-self.mean) / self.std
        x = input
        y = target

        res = []
        for block in self.blocks:
            x = block(x)
            y = block(y)
            x_flat = torch.flatten(x, start_dim=1)
            y_flat = torch.flatten(y, start_dim=1)
            similarity = torch.nn.functional.cosine_similarity(x_flat, y_flat)
            res.append(similarity.cpu().item())
        # 仅利用VGG最后一层的全局(分类)特征计算余弦相似度
        # return res[-1]
        # 或者,利用VGG各Block的特征计算余弦相似度
        return sum(res)

def load_image(path):
    image = Image.open(path).convert('RGB')
    image = transforms.Resize([224,224])(image)
    image = transforms.ToTensor()(image)
    image = image.unsqueeze(0)
    return image.cuda()

query_image_path = "query.jpeg"  # 想要查找的图像
query_image = load_image(query_image_path) 
target_image_dir = "cat_images/" # 待搜索的相册
target_images = [os.path.join(target_image_dir, name) for name in os.listdir(target_image_dir)]
vgg_sim = VGGSim().cuda()
scores = []
for path in target_images:
    target_image = load_image(path)
    score = vgg_sim(query_image, target_image)
    scores.append([path, score])
scores.sort(key=lambda x: -x[1])
for i in range(5):
    print("Top", (i + 1), "similiar =>", scores[i][0].split("/")[-1])

上述代码的核心思想类似于感知损失(Perceptual Loss),利用VGG提取图像的多级特征,从而比较两张图像之间的相似性。区别在于Perceptual Loss中一般使用MAE,MSE比较特征的距离,而这里的代码使用余弦相似度。

一个例子如下,给定一张狸花的图像(query)如下:
Pytorch基于VGG cosine similarity实现简单的以图搜图(图像检索),划水
我们希望找到相册中其他狸花的图像:
Pytorch基于VGG cosine similarity实现简单的以图搜图(图像检索),划水
上述数据集中,编号01到10的为奶牛猫,编号11到20的则为狸花猫。运行代码,结果如下:

Top 1 similiar => 04.jpeg
Top 2 similiar => 20.jpeg
Top 3 similiar => 14.jpeg
Top 4 similiar => 12.jpeg
Top 5 similiar => 15.jpeg

可以看到,检索基本是正确的,20,14,12,15均为狸花猫。04得到最高相似度的原因是其与query的姿势十分相似,且环境也差不多(地板),这也是另一种层面上的两图像相似。文章来源地址https://www.toymoban.com/news/detail-647422.html

到了这里,关于Pytorch基于VGG cosine similarity实现简单的以图搜图(图像检索)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • torch F.cosine_similarity()使用

    看名字就知道是算余弦相似度,但是有个烦人的参数dim,本文主要解决如下几个问题     dim 参数到底有什么作用?如何设置dim参数     两个矩阵使用该函数算余弦相似度到底是按列向量来算还是按行向量来算?     如果想要算矩阵中每个行向量两两之间的相似度,如何计

    2024年02月08日
    浏览(24)
  • pytorch实战7:手把手教你基于pytorch实现VGG16

    前言 ​ 最近在看经典的卷积网络架构,打算自己尝试复现一下,在此系列文章中,会参考很多文章,有些已经忘记了出处,所以就不贴链接了,希望大家理解。 ​ 完整的代码在最后。 本系列必须的基础 ​ python基础知识、CNN原理知识、pytorch基础知识 本系列的目的 ​ 一是

    2023年04月19日
    浏览(54)
  • 某某88以图搜图

    声明:本文仅限学习交流使用,禁止用于非法用途、商业活动等。否则后果自负。如有侵权,请告知删除,谢谢!本教程也没有专门针对某个网站而编写,单纯的技术研究 cnVub29iaHR0cHM6Ly9zLjE2ODguY29tL3lvdXl1YW4vaW5kZXguaHRtPw== 1.对应接口: 2.难点: 1.sign从直观来看是32位,所以我们可

    2024年02月15日
    浏览(37)
  • 使用火山云搜索ESCloud服务构建图文检索应用(以文搜图/以图搜图)

    图文检索在生活中具有广泛的应用,常见的图片检索包括基于文本内容搜索和基于图片内容搜索。用户通过输入文字描述或上传图片就可以在海量的图片库中快速找到同款或者相似图片,这种搜索方式被广泛应用于电商、广告、设计以及搜索引擎等热门领域。 本文 基于 火山

    2024年02月14日
    浏览(38)
  • 图片搜索引擎网站大全,以图搜图网站

    当我们需要搜索一些图片的时候使用图片搜索引擎网站可以帮我们更快地找到自己需要的图片,那么有哪些图片搜索引擎网站可以搜索图片呢?下面小编就来和大家分享几个以图搜图的网站。 1.百度图片搜索引擎网站 百度是最大的中文搜索引擎,百度的图片搜索以中文网站的

    2024年02月07日
    浏览(73)
  • 【milvus】向量数据库,用来做以图搜图+人脸识别的特征向量

    ref:https://milvus.io/docs 第一次装东西,要把遇到的问题和成功经验都记录下来。 1.Download the YAML file 看一下下载下来的是什么东西 Start Milvus In the same directory as the docker-compose.yml file, start up Milvus by running: 报错则需要安装docker-compose了 下载最新版的docker-compose 文件 添加可执行权限

    2024年02月16日
    浏览(43)
  • OpenCV #以图搜图:均值哈希算法(Average Hash Algorithm)原理与实验

    均值哈希算法(Average Hash Algorithm,简称aHash) 是哈希算法的一种,主要用来做相似图片的搜索工作。   均值哈希算法(aHash)首先将原图像缩小成一个固定大小的像素图像,然后将图像转换为灰度图像,通过缩小图像的每个像素与平均灰度值的比较,生成一组哈希值。最后,

    2024年02月08日
    浏览(42)
  • OpenCV #以图搜图:感知哈希算法(Perceptual hash algorithm)的原理与实验

    感知哈希算法(Perceptual Hash Algorithm,简称pHash) 是哈希算法的一种,主要可以用来做以图搜索/相似图片搜索工作。   感知哈希算法(pHash)首先将原图像缩小成一个固定大小的像素图像,然后将图像转换为灰度图像,通过使用离散余弦变换(DCT)来获取频域信息。然后,根

    2024年02月05日
    浏览(58)
  • pytorch实战3:基于pytorch复现VGG16

    前言 ​ 最近在看经典的卷积网络架构,打算自己尝试复现一下,在此系列文章中,会参考很多文章,有些已经忘记了出处,所以就不贴链接了,希望大家理解。 ​ 完整的代码在最后。 本系列必须的基础 ​ python基础知识、CNN原理知识、pytorch基础知识 本系列的目的 ​ 一是

    2024年02月08日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包